Shear Effects in Hot-Wire Measurements

1976 ◽  
Vol 98 (4) ◽  
pp. 771-773 ◽  
Author(s):  
Ronald M. C. So

When a circular cylinder is placed in a two-dimensional shear flow, a lift force is experienced by the cylinder. In the case of hot-wire measurements in the viscous sublayer, this will give rise to a displacement of the wire from its true position. The resultant measurements are found to be in error if the wire length to diameter ratio is > 300 and the shear gradient of the flow is large.

1954 ◽  
Vol 5 (1) ◽  
pp. 1-24 ◽  
Author(s):  
F. N. Frenkiel

SummaryThe paper discusses the influence of wire length on the characteristics of a turbulent flow as measured with a hot-wire anemometer. Most of the mathematical treatment can be directly applied to other problems of length correction, such as may occur, for instance, in problems of astrophysical turbulence, as well as to some problems related to measurements of random processes. The discussion will, however, use the example of a hot-wire anemometer with particular attention to the influence of the length of the wire on the measurement of the intensity of turbulence, correlation coefficients, and scale and microscale of turbulence.


1967 ◽  
Vol 71 (681) ◽  
pp. 657-658 ◽  
Author(s):  
A. D. Bond ◽  
A. M. Porter

Summary:—This note describes how a single constant temperature hot wire may be used for measurements of direction, velocity and turbulence in a two-dimensional flow. The wire probe is rotated by a servo motor which automatically sets the wire with its axis either in the stream direction or normal to the flow. The accuracy of setting the wire in the direction of the stream is about , and across the stream is about 1°. If the higher accuracy is demanded the velocity and turbulence measurements require a second setting of the probe, at 90° to the previous one. When less precision is acceptable, the angle, velocity and turbulence measurements may be taken at the single setting, normal to the stream.


1967 ◽  
Vol 71 (679) ◽  
pp. 511-513 ◽  
Author(s):  
B. J. Hoole ◽  
J. R. Calvert

The hot-wire anemometer is one of the few instruments which can be used to make velocity measurements in turbulent and unsteady flows. However, the probe supporting the wire inevitably interferes with the local flow and it has been found that the effect of this interference on the reading of the anemometer varies considerably as the orientation of the probe to the flow direction is changed (the wire itself being maintained in the same direction). This leads to errors in any measurements taken where the instantaneous local flow direction differs significantly at any time from the direction for which the anemometer was calibrated. Such errors are quite separate from, and in addition to, errors due to finite wire length, incidence of the wire to the local stream direction, etc.


1962 ◽  
Vol 12 (3) ◽  
pp. 388-396 ◽  
Author(s):  
J. A. B. Wills

When using a hot wire for velocity measurements close to a solid boundary, errors may be introduced if the effect of the boundary on the rate of heat loss from the wire is ignored. An experimental determination of the effect is described, in which a hot wire was mounted at various distances from a metal surface forming one wall of a two-dimensional channel. The rate of heat loss was determined electrically, and the air velocity at the wire found from the known laminar velocity profile. The application of the results to turbulent flows is discussed briefly.


1967 ◽  
Vol 28 (1) ◽  
pp. 153-175 ◽  
Author(s):  
F. H. Champagne ◽  
C. A. Sleicher ◽  
O. H. Wehrmann

The measurement of the turbulent shear stresses and normal and bi-normal intensities with a hot-wire anemometer requires that the directional sensitivity of the hot-wire be known. Normal component or cosine law cooling is generally assumed, although for finite wire lengths the non-uniform wire temperature must cause a deviation from the cosine law.Careful heat transfer measurements from wires inclined and normal to the flow were taken for several values of the Reynolds number, the length-to-diameter ratio of the wire, the overheat ratio and for several support configurations. All experiments were performed in air at low subsonic velocities, i.e. M < 0·1. The measurements indicate that the heat loss from an inclined wire is larger than that from a wire normal to the flow with the same normal component of velocity. The data were correlated by \[ U^2_E(\alpha) = U^2(0)(\cos^2\alpha + k^2\sin^2\alpha), \] where UE(α) is the effective cooling velocity at the angle α between the normal to the wire and the mean flow direction and U(0) is the velocity at α = 0. The value of k was found to depend primarily upon the length-to-diameter ratio ([lscr ]/d) of the wire. For platinum wires k is approximately 0·20 for [lscr ]/d = 200, decreases with increasing [lscr ]/d, and becomes effectively zero at [lscr ]/d = 600.To aid in interpreting the heat transfer data, measurements of the temperature distribution along inclined and normal wires were made with a high sensitivity infra-red detector coupled to a high resolution microscrope with reflective optics. The measurements indicate that inclined wires and normal wires have nearly identical end conduction losses, although the temperature distribution on an inclined wire is slightly asymmetrical. Therefore, the deviation from the cosine law is caused by an increase in the convection heat loss, and this increase is attributed to the tangential component of velocity.


10.29007/zw9k ◽  
2020 ◽  
Author(s):  
Kazuhide Nakata ◽  
Kazuki Umemoto ◽  
Kenji Kaneko ◽  
Ryusuke Fujisawa

This study addresses the development of a robot for inspection of old bridges. By suspending the robot with a wire and controlling the wire length, the movement of the robot is realized. The robot mounts a high-definition camera and aims to detect cracks on the concrete surface of the bridge using this camera. An inspection method using an unmanned aerial vehicle (UAV) has been proposed. Compared to the method using an unmanned aerial vehicle, the wire suspended robot system has the advantage of insensitivity to wind and ability to carry heavy equipments, this makes it possible to install a high-definition camera and a cleaning function to find cracks that are difficult to detect due to dirt.


1973 ◽  
Vol 95 (3) ◽  
pp. 289-294 ◽  
Author(s):  
N. E. Hardwick ◽  
E. K. Levy

The steady, laminar, two-dimensional wake above a thin vertical isothermal heated plate cooled by free convection was investigated theoretically and experimentally. The system of partial differential equations governing the fluid motion and heat transfer in the vicinity of the plate and in the near wake region was formulated and solved using finite difference techniques. Using air, the temperature and velocity profiles in the wake region were measured experimentally using a laser holographic interferometer and a constant temperature hot wire anemometer.


Author(s):  
Vassilios Theofilis ◽  
Michel O. Deville ◽  
Peter W. Duck ◽  
Alexander Fedorov

This paper is concerned with the structure of steady two–dimensional flow inside the viscous sublayer in hypersonic boundary–layer flow over a flat surface in which microscopic cavities (‘microcavities’) are embedded. Such a so–called Ultra Absorptive Coating (UAC) has been predicted theoretically [1] and demonstrated experimentally [2] to stabilize passively hypersonic boundary–layer flow. In an effort to further quantify the physical mechanism leading to flow stabilization, this paper focuses on the nature of the basic flows developing in the configuration in question. Direct numerical simulations are performed, addressing firstly steady flow inside a singe microcavity, driven by a constant shear, and secondly a model of a UAC surface in which the two–dimensional boundary layer over a flat plate and a minimum nontrivial of two microcavities embedded in the wall are solved in a coupled manner. The influence of flow– and geometric parameters on the obtained solutions is illustrated. Based on the results obtained, the limitations of currently used theoretical methodologies for the description of flow instability are identified and suggestions for the improved prediction of the instability characteristics of UAC surfaces are discussed.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Ellann Cohen ◽  
Leon Glicksman

When the transient hot-wire method is used to measure the thermal conductivity of very low thermal conductivity silica aerogel (in the range of 10 mW/m·K at 1 atm) end effects due to the finite wire size and radiation corrections must be considered. An approximate method is presented to account for end effects with realistic boundary conditions. The method was applied to small experimental samples of the aerogel using different wire lengths. Initial conductivity results varied with wire length. This variation was eliminated by the use of the end effect correction. The test method was validated with the NIST (National Institute of Standards and Technology) Standard Reference Material 1459, fumed silica board to within 1 mW/m·K. The aerogel is semitransparent. Due to the small wire radius and short transient, radiation heat transfer may not be fully accounted for. In a full size aerogel panel radiation will augment the phonon conduction by a larger amount.


Sign in / Sign up

Export Citation Format

Share Document