shear gradient
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 0)

H-INDEX

12
(FIVE YEARS 0)

2020 ◽  
Vol 125 (25) ◽  
Author(s):  
Héctor Alarcón ◽  
Matías Herrera-Muñoz ◽  
Nicolas Périnet ◽  
Nicolás Mujica ◽  
Pablo Gutiérrez ◽  
...  


Haematologica ◽  
2020 ◽  
pp. 0-0
Author(s):  
Thomas Hoefer ◽  
Akshita Rana ◽  
Be’eri Niego ◽  
Shweta Jagdale ◽  
Hugo J. Albers ◽  
...  

Intraluminal thrombus formation precipitates conditions such as acute myocardial infarction and disturbs local blood flow resulting in areas of rapidly changing blood flow velocities and steep gradients of blood shear rate. Shear rate gradients are known to be pro-thrombotic with an important role for the shear-sensitive plasma protein von Willebrand factor (VWF). Here, we developed a single-chain antibody (scFv) that targets a shear gradient specific conformation of VWF to specifically inhibit platelet adhesion at sites of SRGs but not in areas of constant shear. Microfluidic flow channels with stenotic segments were used to create shear rate gradients during blood perfusion. VWF-GPIbα interactions were increased at sites of shear rate gradients compared to constant shear rate of matched magnitude. The scFv-A1 specifically reduced VWF-GPIbα binding and thrombus formation at sites of SRGs but did not block platelet deposition and aggregation under constant shear rate in upstream sections of the channels. Significantly, the scFv A1 attenuated platelet aggregation only in the later stages of thrombus formation. In the absence of shear, direct binding of scFv-A1 to VWF could not be detected and scFV-A1 did not inhibit ristocetin induced platelet agglutination. We have exploited the pro-aggregatory effects of SRGs on VWF dependent platelet aggregation and developed the shear-gradient sensitive scFv-A1 antibody that inhibits platelet aggregation exclusively at sites of shear rate gradients. The lack of VWF inhibition in non-stenosed vessel segments places scFV-A1 in an entirely new class of anti-platelet therapy for selective blockade of pathological thrombus formation while maintaining normal haemostasis.



2020 ◽  
Vol 125 (1283) ◽  
pp. 60-86
Author(s):  
S. Liu ◽  
J. Bai ◽  
C. Wang

ABSTRACTDynamic soaring improves the endurance of Unmanned Aerial Vehicles (UAVs) by obtaining energy from the horizontal wind shear gradient. The use of dynamic soaring in small solar UAVs can mitigate the trade-off between energy capacity and battery weight to achieve continuous all-day flight. The goal of this study is to determine the optimal energy acquisition methods for small solar UAVs using dynamic soaring and to decrease the battery weight to achieve all-day flight. A dynamic soaring UAV model that considers the influence of the wind shear gradient and a solar power energy model are established. The conditions to obtain a closed-loop energy system during daytime and nighttime flights are discussed, and the minimum mass of the energy system required for these conditions is determined. Simulations of single-cycle circular flights and a 72-h continuous flight of a small solar UAV are performed. The analyses and simulation results show that: (1) the combination of dynamic soaring and solar technology significantly reduces the energy consumption and reduces the required battery weight, (2) the flight speed and flight attitude angles have significant effects on the optimal total energy acquisition and (3) wind fields with a large horizontal gradient and strong solar illumination provide energy and load advantages.



Haematologica ◽  
2020 ◽  
Vol 105 (10) ◽  
pp. 2355-2357
Author(s):  
Yathreb Asaad ◽  
Netanel Korin
Keyword(s):  




2018 ◽  
Vol 10 (4) ◽  
pp. 194-206 ◽  
Author(s):  
Erdem Kucukal ◽  
Jane A. Little ◽  
Umut A. Gurkan

Shear dependent adhesion of red blood cells is shown using a shear gradient microfluidic system that mimics human microvasculature.



Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 964-964
Author(s):  
Erdem Kucukal ◽  
Jane A. Little ◽  
Umut A. Gurkan

Abstract The pathophysiology of sickle cell disease (SCD) involves altered biophysical properties of red blood cells (RBCs) and increased cellular adhesion, which can synergistically trigger recurrent and painful vaso-occlusive events in the microcirculatory network. RBC adhesion to the endothelial wall is heterogeneous and may initiate such occlusions by disrupting the local flow thus activating platelets and promoting subsequent cell-cell interactions. Moreover, these episodic events take place within a wide range of dynamically changing shear rates at the microscale. In order to better understand the role of shear rate on this process, we quantified shear-dependent RBC adhesion to endothelial proteins fibronectin (FN) and laminin (LN) utilizing a microfluidic system that can simulate physiologically relevant shear gradients of microcirculatory blood flow at a single flow rate. Whole blood samples were collected from 20 patients (10 males and 10 females) with homozygous SCD (HbSS). Samples were perfused through FN and LN immobilized shear-gradient microchannels (Fig. 1A) in which the shear rate continuously changes along flow direction. Computational simulations characterized the flow dynamics near the adherent RBCs (Fig. 1B). Based on the numerical results, a rectangular "field of interest (FOI)", along which the shear rate dropped approximately three-fold, was chosen for quantification of shear-dependent RBC adhesion. We observed changes in RBC adhesion to LN and FN in the shear gradient flow. Figure 1C and 1D show typical adhesion curves of surface adherent RBCs for an individual SCD sample within the FOI. To assess patient specific shear-dependent adhesion, we defined a parameter, "shear dependent adhesion rate (SDAR)", which is the slope of the adhesion curves based on normalized RBC adhesion numbers. A higher SDAR value was indicative of marked numbers of adherent RBCs that detach at higher shear rates whereas the effect of shear rate on RBC detachment was less for a lower SDAR. We observed an inverse relationship between SDAR and number of persistently adherent RBCs at high shear rates. Shear-dependent RBC adhesion to LN was heterogeneous among SCD patients. Patients with higher WBC counts constituted the low SDAR population with a threshold SDAR value of 60 (Fig. 1E, p=0.005, ANOVA). WBCs from patients with higher SDARs (and fewer persistently adhered cells) were all within the normal range. Patients in the low SDAR group also had significantly elevated absolute neutrophil counts (Fig. 1F, p=0.006, ANOVA), and ferritin levels (Fig. 1G, p=0.007, ANOVA). The mean ferritin level of those with low SDAR was nearly ten times greater than normal (mean= [3272.3 ± 791.9] μg/L vs. [784.5±219.6] μg/L). No white blood cell (WBC) adhesion was observed in the experiments. Here, we report a novel shear dependent adhesion ratio of sickle RBCs utilizing LN and FN functionalized microchannels. The approach presented here enabled us to create a shear gradient throughout the channel which may simulate the physiological flow conditions in the post-capillary venules. We further analyzed shear-dependent RBC adhesion in a patient specific manner and identified patient groups with low and high SDAR. The findings also suggested a link between lower shear dependent sickle RBC adhesion to LN and patient clinical phenotypes including inflammation and iron overload. Acknowledgments: This work was supported by grant #2013126 from the Doris Duke Charitable Foundation, National Heart Lung and Blood Institute R01HL133574, and National Science Foundation CAREER Award 1552782. Figure 1: Shear-dependent sickle RBC adhesion in microscale flow. (A) Macroscopic image of the shear-gradient microchannel with the arrow indicating flow direction. (B) Velocity and shear rate contours on a 2D plane above the bottom surface. The dashed rectangular area indicates the field of interest (FOI) where the experimental data were obtained. (C, D) Typical distribution of adherent deformable and non-deformable RBCs in LN and FN functionalized microchannels with the shear gradient. Dashed lines represent the adhesion curves and the corresponding equations were used to quantify shear dependent adhesion data. Shear-dependent RBC adhesion was lower (nSDAR<60) in patients with elevated white blood cell counts (E), absolute neutrophil counts (F), and serum ferritin levels (G). The dashed rectangles indicate the normal clinical values. Figure 1 Figure 1. Disclosures Little: Hemex Health: Equity Ownership. Gurkan: Hemex Health: Employment, Equity Ownership.



2016 ◽  
Vol 371 (1704) ◽  
pp. 20150391 ◽  
Author(s):  
Douglas R. Warrick ◽  
Tyson L. Hedrick ◽  
Andrew A. Biewener ◽  
Kristen E. Crandell ◽  
Bret W. Tobalske

While prior studies of swallow manoeuvering have focused on slow-speed flight and obstacle avoidance in still air, swallows survive by foraging at high speeds in windy environments. Recent advances in field-portable, high-speed video systems, coupled with precise anemometry, permit measures of high-speed aerial performance of birds in a natural state. We undertook the present study to test: (i) the manner in which barn swallows ( Hirundo rustica ) may exploit wind dynamics and ground effect while foraging and (ii) the relative importance of flapping versus gliding for accomplishing high-speed manoeuvers. Using multi-camera videography synchronized with wind-velocity measurements, we tracked coursing manoeuvers in pursuit of prey. Wind speed averaged 1.3–2.0 m s −1 across the atmospheric boundary layer, exhibiting a shear gradient greater than expected, with instantaneous speeds of 0.02–6.1 m s −1 . While barn swallows tended to flap throughout turns, they exhibited reduced wingbeat frequency, relying on glides and partial bounds during maximal manoeuvers. Further, the birds capitalized on the near-earth wind speed gradient to gain kinetic and potential energy during both flapping and gliding turns; providing evidence that such behaviour is not limited to large, fixed-wing soaring seabirds and that exploitation of wind gradients by small aerial insectivores may be a significant aspect of their aeroecology. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight'.



2016 ◽  
Vol 23 (2) ◽  
pp. 480-486 ◽  
Author(s):  
D. C. F. Wieland ◽  
V. M. Garamus ◽  
T. Zander ◽  
C. Krywka ◽  
M. Wang ◽  
...  

The development of a dedicated small-angle X-ray scattering setup for the investigation of complex fluids at different controlled shear conditions is reported. The setup utilizes a microfluidics chip with a narrowing channel. As a consequence, a shear gradient is generated within the channel and the effect of shear rate on structure and interactions is mapped spatially. In a first experiment small-angle X-ray scattering is utilized to investigate highly concentrated protein solutions up to a shear rate of 300000 s−1. These data demonstrate that equilibrium clusters of lysozyme are destabilized at high shear rates.



2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Abhishek Jain ◽  
Amanda Graveline ◽  
Anna Waterhouse ◽  
Andyna Vernet ◽  
Robert Flaumenhaft ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document