Elastohydrodynamic Lubrication of Spherical Surfaces of Low Elastic Modulus

1976 ◽  
Vol 98 (4) ◽  
pp. 524-529 ◽  
Author(s):  
S. Biswas ◽  
R. W. Snidle

The paper presents a numerical solution for the elastohydrodynamic lubrication of low modulus point contacts which is broadly equivalent to the theory of Grubin for materials of high elastic modulus. The theoretical results obtained for the variation of minimum film thickness using this approach are therefore expected to apply to conditions of high load and low speed. For less severe conditions in which elastic deformation is less significant an alternative approach has been developed. Results of this analysis show the transition from undeformed to heavily loaded conditions. The effect of lubricant starvation has been examined for heavily loaded conditions and the theoretical results are compared with those obtained previously for high elastic modulus point contact.

Author(s):  
Eduardo de la Guerra Ochoa ◽  
Javier Echávarri Otero ◽  
Enrique Chacón Tanarro ◽  
Benito del Río López

This article presents a thermal resistances-based approach for solving the thermal-elastohydrodynamic lubrication problem in point contact, taking the lubricant rheology into account. The friction coefficient in the contact is estimated, along with the distribution of both film thickness and temperature. A commercial tribometer is used in order to measure the friction coefficient at a ball-on-disc point contact lubricated with a polyalphaolefin base. These data and other experimental results available in the bibliography are compared to those obtained by using the proposed methodology, and thermal effects are analysed. The new approach shows good accuracy for predicting the friction coefficient and requires less computational cost than full thermal-elastohydrodynamic simulations.


A technique using Newton’s rings for mapping the oil film of lubricated point contacts is described. A theoretical value for the film thickness of such contacts in elastohydrodynamic lubrication is derived. The experimental results give the exit constriction predicted by previous theory but never shown in detail. The comparison of theoretical and experimental oil film thicknesses, which is satisfactorily accurate, gives strong evidence for a viscous surface layer some 1000Å thick. This film agrees with the known ‘lubricating power’ of the various oils tested.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohamed Abd Alsamieh

Purpose The purpose of this paper is to study the behavior of a single ridge passing through elastohydrodynamic lubrication of point contacts problem for different ridge shapes and sizes, including flat-top, triangular and cosine wave pattern to get an optimal ridge profile. Design/methodology/approach The time-dependent Reynolds’ equation is solved using Newton–Raphson technique. Several shapes of surface feature are simulated and the film thickness and pressure distribution are obtained at every time step by simultaneous solution of the Reynolds’ equation and film thickness equation, including elastic deformation. Film thickness and pressure distribution are chosen to be the criteria in the comparisons. Findings The geometrical characteristics of the ridge play an important role in the formation of lubricant film thickness profile and the pressure distribution through the contact zone. To minimize wear, friction and fatigue life, an optimal ridge profile should have smooth shape with small ridge size. Obtained results are compared with other published numerical results and show a good agreement. Originality/value The study evaluates the performance of different surface features of a single ridge with different shapes and sizes passing through elastohydrodynamic of point contact problem in relation to film thickness and pressure profile.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Ilya I. Kudish

Heavily loaded point elastohydrodynamically lubricated (EHL) contacts involved in steady purely transitional, skewed transitional, and transitional with spinning motions are considered. It is shown that in the central parts of the inlet and exit zones of such heavily loaded point EHL contacts the asymptotic equations governing the EHL problem along the lubricant flow streamlines for the above types of contact motions can be reduced to two sets of asymptotic equations: one in the inlet and one in the exit zones. The latter sets of equations are identical to the asymptotic equations describing lubrication process in the inlet and exit zones of the corresponding heavily loaded line EHL contact (Kudish, I. I., 2013, Elastohydrodynamic Lubrication for Line and Point Contacts: Asymptotic and Numerical Approaches, Chapman and Hall/CRC). For each specific motion of a point contact, a separate set of formulas for the lubrication film thickness is obtained. For different types of contact motions, these film thickness formulas differ significantly (Kudish, I. I., 2013, Elastohydrodynamic Lubrication for Line and Point Contacts: Asymptotic and Numerical Approaches, Chapman and Hall/CRC). For heavily loaded contacts, the discovered relationship between point and line EHL problems allows to apply to point contacts most of the results obtained for line contacts (Kudish, I. I., 2013, Elastohydrodynamic Lubrication for Line and Point Contacts: Asymptotic and Numerical Approaches, Chapman and Hall/CRC; Kudish, I. I., and Covitch, M. J., 2010, Modeling and Analytical Methods in Tribology, Chapman and Hall/CRC).


2021 ◽  
pp. 1-26
Author(s):  
Liangwei Qiu ◽  
Shuangbiao Liu ◽  
Zhijian Wang ◽  
Xiaoyang Chen

Abstract Elastohydrodynamic Lubrication (EHL) in point contacts can be numerically solved with various iteration methods, but so far the flow continuity of such solutions has not been explicitly verified. A series of closed regions with the same inlet side boundary is defined and two treatments to total all flows related to the other boundaries of the closed regions are defined to enable flow continuity verifications. The multigrid method and the traditional single mesh method with different relaxation configurations are utilized to solve different cases to evaluate computation efficiencies. For the multigrid method, the combination of a pointwise solver together with hybrid relaxation factors is identified to perform better than other combinations. The single mesh method has inferior degrees of flow continuity than the multigrid method and needs much smaller error control values of pressure to achieve a decent level of flow continuity. Because flow continuity has a physical meaning, its verifications should be routinely included in any self-validation process for any EHL results. Effects of control errors of pressure, mesh sizes, differential schemes and operating conditions on flow continuities are studied. Then, trends of film thickness with respect to speed are briefly discussed with meshes up to 4097 by 4097.


Author(s):  
Jinlei Cui ◽  
Peiran Yang ◽  
Motohiro Kaneta ◽  
Ivan Krupka

Transient behaviour of tribo-characteristics caused by transversely oriented ridges on point contact surfaces was investigated based on a thermal elastohydrodynamic lubrication analysis. The ridges were assumed to exist on both the contact surfaces with different velocities. Results show that the interaction of ridges gives a large influence on the local film thickness, pressure, friction coefficient, temperatures on both the solid surfaces and temperature in the oil film. It is also pointed out that the size of the contact bodies brings strong effect on the temperature distribution and shear rate as well as on the friction coefficient. Furthermore, it is revealed that under rolling-sliding conditions, the shear-thinning property of the lubricant is negligible when the size of the contact body is large enough. However, shear-thinning effect plays an important role when the size is extremely small.


1976 ◽  
Vol 98 (3) ◽  
pp. 375-381 ◽  
Author(s):  
B. J. Hamrock ◽  
D. Dowson

A numerical solution of the isothermal elastohydrodynamic problem for point contacts has been presented which reproduces all the essential features of the previously reported experimental observations based upon optical interferometry. In particular, the two “side lobes” in which minimum film thickness regions occur are shown to emerge in the theoretical solutions. The influence of the ellipticity parameter upon solutions to the point contact problem has been explored in the present paper. The ellipticity parameter (k) was varied from one (a ball on a plate) to eight (a configuration approaching line contact), and it has been shown that the minimum film thicknesses can be related to the well known line contact solutions by remarkably simple expressions involving either (k) or the effective radius of curvature ratio (Ry/Rx).


Author(s):  
D Jalali Vahid ◽  
H Rahnejat ◽  
Z M Jin ◽  
D Downson

In this paper a solution method is presented for the transient isothermal elastohydrodynamic lubrication of point contact conjunctions, based upon the Newton-Raphson scheme and low iteration relaxation. The numerical results are compared with the numerical and experimental observations of others for the circular point contact of a ball against a flat glass disc under oscillating conditions. Good agreement has been found with other numerical solutions. The comparison with the experimental results shows good qualitative agreement.


1976 ◽  
Vol 98 (2) ◽  
pp. 223-228 ◽  
Author(s):  
B. J. Hamrock ◽  
D. Dowson

The analysis of an isothermal elastohydrodynamic lubrication (EHL) point contact was evaluated numerically. This required the simultaneous solution of the elasticity and Reynolds equations. In the elasticity analysis the contact zone is divided into equal rectangular areas and it is assumed that a uniform pressure is applied over each element. In the numerical analysis of the Reynolds’ equation a phi analysis where phi is equal to the pressure times the film thickness to the 3/2 power is used to help the relaxation process. The EHL point contact analysis is applicable for the entire range of elliptical parameters and is valid for any combination of rolling and sliding within the contact.


Sign in / Sign up

Export Citation Format

Share Document