Comparison of Linear, Nonlinear, Hysteretic, and Probabilistic Models for Magnetorheological Fluid Dampers

Author(s):  
Corina Sandu ◽  
Steve Southward ◽  
Russell Richards

Magnetorheological (MR) fluid dampers have a semicontrollable damping force output that is dependent on the current input to the damper, as well as the relative velocity. The mechanical construction, fluid properties, and embedded electromagnet result in a dynamic damper response. This study evaluates four modeling approaches with respect to predicting the multi-input single-output behavior of an experimental MR damper when the inputs are band-limited random signals typically encountered in primary suspension applications. The first two models in this study are static in the sense that there is a unique output for any given set of inputs and no dynamics is present in either model. The third model incorporates a dynamic filter with the nonlinear model to exhibit hysteretic effects, which are known to exist in actual MR dampers. The fourth model is probabilistic and illustrates the dynamic nature of an actual MR damper. The results of this study clearly show the importance of nonlinear and dynamic effects in magnetorheological damper response. This study also highlights the importance of characterizing magnetorheological dampers using excitation signals that are representative of an actual implementation.

Author(s):  
Jiajia Zheng ◽  
Yancheng Li ◽  
Jiong Wang

This paper presents the design and multi-physics optimization of a novel multi-coil magnetorheological (MR) damper with a variable resistance gap (VRG-MMD). Enabling four electromagnetic coils (EMs) with individual exciting currents, a simplified magnetic equivalent circuit was presented and the magnetic flux generated by each voltage source passing through each active gap was calculated as vector operations. To design the optimal geometry of the VRG-MMD, the multi-physics optimization problem including electromagnetics and fluid dynamics has been formulated as a multi-objective function with weighting ratios among total damping force, dynamic range, and inductive time constant. Based on the selected design variables (DVs), six cases with different weighting ratios were optimized using Bound Optimization BY Quadratic Approximation (BOBYQA) technique. Finally, the vibration performance of the optimal VRG-MMD subjected to sinusoidal and triangle displacement excitations was compared to that of the typical multi-coil MR damper.


2021 ◽  
pp. 107754632110388
Author(s):  
Hongwei Lu ◽  
Zhifei Zhang ◽  
Yansong He ◽  
Zhi Li ◽  
Jujiang Xie ◽  
...  

The realization of the desired damping characteristics based on magnetorheological (MR) dampers is important for semi-active control and useful for the matching process of suspension damper. To reduce the cost of the control system and improve the output accuracy of the desired damping force, this study proposes an open-loop control method featuring an accurate inverse model of the MR damper and a tripolar current driver. The reversible sigmoid model is used to accurately and quickly calculate the desired current. Furthermore, the change characteristic of the desired current is analyzed qualitatively and quantitatively, which shows that the desired current needs to change suddenly to make the actual damping force velocity curve quickly approach the desired one. To meet the demand of the desired current, a tripolar current driver controlled by an improved PI control algorithm is proposed, which is with fast response and low noise. Finally, the bench test verifies that the control system can achieve different desired damping characteristics well, and the inherent error in this process is explained through the gap between the available damping force area and the desired damping characteristic curve and the crossover phenomenon of the dynamic characteristic curves of the MR damper.


2020 ◽  
Vol 10 (16) ◽  
pp. 5586
Author(s):  
Bo-Gyu Kim ◽  
Dal-Seong Yoon ◽  
Gi-Woo Kim ◽  
Seung-Bok Choi ◽  
Aditya Suryadi Tan ◽  
...  

In this study, a new class of magnetorheological (MR) damper, which can realize desired damping force at both low and high speeds of vehicle suspension systems, is proposed and its salient characteristics are shown through computer simulations. Unlike conventional MR dampers, the proposed MR damper has a specific pole shape function and therefore the damping coefficient is changed by varying the effective area of the main orifice. In addition, by controlling the opening or closing the bypass orifice, the drastic change of the damping coefficient is realizable. After briefly describing the operating principle, a mathematical modeling is performed considering the pole shape function which is a key feature of the proposed MR damper. Then, the field-dependent damping force and piston velocity-dependent characteristics are presented followed by an example on how to achieve desired damping force characteristics by changing the damping coefficient and slope breaking point which represents the bilinear damping property.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Zhizhen Dong ◽  
Zhimin Feng ◽  
Yuehua Chen ◽  
Kefan Yu ◽  
Gang Zhang

The consistency of magnetic flux density of damping gap (CMDG) represents the balancing magnetic flux density in each damping gap of magnetorheological (MR) dampers. It can make influences on the performances of MR dampers and the accuracy of relevant objective functions. In order to improve the mechanical performances of the MR damper with a two-stage coil, the function for calculating CMDG needs to be found. By establishing an equivalent magnetic circuit model of the MR damper, the CMDG function is derived. Then, the multiobjective optimization function and the working flow of optimal design are presented by combining the parallel-plate model of the MR damper with the function posed before. Taking the damping force, the dynamic range, the response time, and the CMDG as the optimization objective, and the external geometric dimensions of the SG-MRD60 damper as the bound variable, this paper optimizes the internal geometric dimensions of MR damper by using a NSGA-III algorithm on the PlatEMO platform. The results show that the obtained scheme in Pareto-optimal solutions has existed with better performance than that of SG-MRD60 scheme. According to the results of the finite element analysis, the multiobjective optimization design including the CMDG function can improve the uniformity of magnetic flux density of the MR damper in damping gap, which meets the requirements of manufacture and application.


Author(s):  
Anria Strydom ◽  
Werner Scholtz ◽  
Schalk Els

Magnetorheological (MR) dampers are controllable semi-active dampers capable of providing a range of continuous damping settings. MR dampers are often incorporated in suspension systems of vehicles where conflicting damping characteristics are required for favorable ride comfort and handling behavior. For control applications the damper controller determines the required damper current in order to track the desired damping force, often by using a suitable MR damper model. In order to utilise the fast switching time capability of MR dampers, a model that can be used to directly calculate damper current is desired. Unfortunately few such models exist and other methods, which often negatively affect the computational efficiency of the model, need to be used when implementing these models. In this paper a selection of MR damper models are developed and evaluated for both accuracy and computational efficiency while tracking a desired damping force. The Kwok model is identified as a suitable candidate for the intended suspension control application.


2013 ◽  
Vol 284-287 ◽  
pp. 3586-3590 ◽  
Author(s):  
Chia Pao Chang ◽  
Ying Hsiang Lin ◽  
Yu Cheng Chen

Magnetorheological fluid (MR fluid) has been widely used in the industrial fields, especially in the machinery, automobile, national defense and construction industries. Most of the researches of the Magnetorheological Damper only utilized device to examine the effects of different levels of voltage, amplitude and frequency on energy reduction. They find a combination of the number of circles of wire, damping tubes, enameled wire sleeves for liquid of MR damper controlled to increase the damping force. This study uses different ways to solve the problem. We think outside the box and apply the concepts and technology of systematic innovation method to improve the structure of the MR damper for increasing the effectiveness. This study uses the contradiction matrix, 39 engineering parameters, and 40 inventive and innovative principles to identify the areas of improvement to address the exist problems. Regarding the decrease of the magnetic field acting force due to increase of the moving distance and the effect on the magnetorheological damper efficiency. Finally, we propose an improved design of the MR Damper.


2020 ◽  
Vol 51 (7-9) ◽  
pp. 119-126
Author(s):  
Shujing Sha ◽  
Zhongnan Wang ◽  
Haiping Du

With the development of automobile technology, the traditional passive suspension cannot meet people’s requirements for vehicle comfort and safety. For this reason, a variable damping semi-active suspension applied magnetorheological damper is proposed. By collecting various performance parameters of the front suspension, the optimal feedback control matrix is obtained by applying linear quadratic Gaussian control strategy, and the optimal damping force output is also obtained to improve comfort and vehicle safety by reducing vibration. The semi-active suspension model of a quarter vehicles was established by MATLAB/Simulink, and the simulation experiment was carried out. The results show that the semi-active suspension system with magnetorheological damper is superior to the traditional passive suspension in terms of vibration absorption; meanwhile, the root mean square values of vehicle acceleration, suspension dynamic deflection, tire dynamic travel, and tire dynamic load are reduced, which effectively improve the vehicle ride stability.


2012 ◽  
Vol 482-484 ◽  
pp. 843-847
Author(s):  
Jia Ling Yao ◽  
Wen Ku Shi ◽  
Jin Feng Lu

The reported mathematical models of magnetorheological (MR) damper cannot make a good tradeoff among reflecting the damper’s nonlinear behavior and controllability. Damping characteristic experiments have been conducted on a MR damper. A composite polynomial model has been proposed integrating the experimental investigation and the polynomial model, in which the plot of polynomial coefficient vs. current is divided into two sections to reflect the property of the current saturation, meanwhile, the affections of exciting amplitude and frequency are considered in this model. The reverse model of the proposed model is easy to be obtained, so it is convenient to realize an open-loop control system to achieve a desirable damping force. The parameters of this model are identified using experimental data in a certain frequency and amplitude, as well as diverse currents. Compared numerical simulation with experimental data, it is verified that the proposed model can accurately predict the damping force without modifying the parameters of the model when frequency, amplitude and current changed.


2014 ◽  
Vol 663 ◽  
pp. 158-162
Author(s):  
Alif Zulfakar bin Pokaad ◽  
Md Radzai bin Said ◽  
Fauzi bin Ahmad ◽  
Mohd Nazeri Kamaruddin

This paper focuses on the design of the control structure which consists of inner loop controller employed for MR damper under impact loading by using computer simulation. The simulation is done by using MATLAB 7.0. The structure of the inner loop control for the proposed MR damper model uses a simple PI control to achieve the desired force. In this simulation, the MR damper model that has been validated with the experimental result is used to simulate the actual force that produced by MR damper. The performance of inner loop controller to track the actual force produced by MR damper by obtaining the several input functions which are half wave of sinusoidal, saw-tooth, square and random functions of desired force with the variation in pendulum mass of 15 kg and 20 kg are investigated. It can be seen clearly that under several input functions, the proposed polynomial model with PI controller has the good ability to track the desired damping force under impact loading.


Author(s):  
Muhammad Adhar Bagus ◽  
Azizan As’arry ◽  
Hesham Ahmed Abdul Mutaleb Abas ◽  
Abdul Aziz Hairuddin ◽  
Mohd Khair Hassan

Recently MRF damper -which has a significant controllable damping force - used frequently in many active and semi-active suspension systems. However, MRF damper needs controller to estimate the desired force to dissipate the occurred vibration instantaneously. PID controller is one of the effective feedback controllers which shows robustness and simplicity in control MRF dampers, but still the parameters of the PID controller under study to find out the optimum values. This study focused on the vibration control using Magneto-rheological (MR) damper on a FSAE quarter car suspension test rig to study and obtain the optimum running condition. The test rig was designed, modified and then tested using a P-controller integrated with MR damper, unbalance mass used as disturbance and analyzed using LABVIEW software in time and frequency domains. The natural frequency obtained was 2.2 Hz were similar to the actual FSAE car natural frequency. Based on the acceleration against time graph with different proportional gain value the optimal value for proportional gain, Kp was 1. Hence, the experiment work could be used as the initial stage to study and develop a robust controller to suppress vibration on a car.


Sign in / Sign up

Export Citation Format

Share Document