Research on performance of vehicle semi-active suspension applied magnetorheological damper based on linear quadratic Gaussian control

2020 ◽  
Vol 51 (7-9) ◽  
pp. 119-126
Author(s):  
Shujing Sha ◽  
Zhongnan Wang ◽  
Haiping Du

With the development of automobile technology, the traditional passive suspension cannot meet people’s requirements for vehicle comfort and safety. For this reason, a variable damping semi-active suspension applied magnetorheological damper is proposed. By collecting various performance parameters of the front suspension, the optimal feedback control matrix is obtained by applying linear quadratic Gaussian control strategy, and the optimal damping force output is also obtained to improve comfort and vehicle safety by reducing vibration. The semi-active suspension model of a quarter vehicles was established by MATLAB/Simulink, and the simulation experiment was carried out. The results show that the semi-active suspension system with magnetorheological damper is superior to the traditional passive suspension in terms of vibration absorption; meanwhile, the root mean square values of vehicle acceleration, suspension dynamic deflection, tire dynamic travel, and tire dynamic load are reduced, which effectively improve the vehicle ride stability.

Author(s):  
Shaohua Li ◽  
Junwu Zhao ◽  
Zhida Zhang

An 8-DOF three-axle vehicle model with semi-active suspension is built in this paper, of which the accuracy is verified through simulations and experiments. Based on the optimal control theory, the linear quadratic Gaussian controller for semi-active suspension is designed with 10 evaluation indicators. Considering the deficiency of linear quadratic Gaussian control weight coefficients based on experience, analytic hierarchy process is employed to determine the weight coefficients of each indicator. The control effect is analyzed through MATLAB/Simulink. The adaptability of proposed control strategy under 25 driving conditions is analyzed with different road grades and speeds. The driving condition of “70 km/h travel speed on the road of grade B” is selected, under which the comparison of vehicle responses between semi-active suspension and passive suspension is made. Results show that the vertical vibration is effectively diminished by using semi-active suspension with linear quadratic Gaussian controller. Compared with passive suspension, the riding comfort is improved and the adverse effect on handling stability is eliminated. The three-axle vehicle with semi-active suspension has good adaptability to various working conditions.


1994 ◽  
Vol 116 (1) ◽  
pp. 123-131 ◽  
Author(s):  
A. G. Ulsoy ◽  
D. Hrovat ◽  
T. Tseng

A two-degree-of-freedom quarter-car model is used as the basis for linear quadratic (LQ) and linear quadratic Gaussian (LQG) controller design for an active suspension. The LQ controller results in the best rms performance trade-offs (as defined by the performance index) between ride, handling and packaging requirements. In practice, however, all suspension states are not directly measured, and a Kalman filter can be introduced for state estimation to yield an LQG controller. This paper (i) quantifies the rms performance losses for LQG control as compared to LQ control, and (ii) compares the LQ and LQG active suspension designs from the point of view of stability robustness. The robustness of the LQ active suspensions is not necessarily good, and depends strongly on the design of a backup passive suspension in parallel with the active one. The robustness properties of the LQG active suspension controller are also investigated for several distinct measurement sets.


Author(s):  
Corina Sandu ◽  
Steve Southward ◽  
Russell Richards

Magnetorheological (MR) fluid dampers have a semicontrollable damping force output that is dependent on the current input to the damper, as well as the relative velocity. The mechanical construction, fluid properties, and embedded electromagnet result in a dynamic damper response. This study evaluates four modeling approaches with respect to predicting the multi-input single-output behavior of an experimental MR damper when the inputs are band-limited random signals typically encountered in primary suspension applications. The first two models in this study are static in the sense that there is a unique output for any given set of inputs and no dynamics is present in either model. The third model incorporates a dynamic filter with the nonlinear model to exhibit hysteretic effects, which are known to exist in actual MR dampers. The fourth model is probabilistic and illustrates the dynamic nature of an actual MR damper. The results of this study clearly show the importance of nonlinear and dynamic effects in magnetorheological damper response. This study also highlights the importance of characterizing magnetorheological dampers using excitation signals that are representative of an actual implementation.


Author(s):  
Alexandru Dobre

In the context of improving the comfort and dynamics of the vehicle, the suspension system has been continuously developed and improved, especially using magnetorheological (MR) shock absorbers. The development of this technology which is relatively new has not been easy. Thus, the first widespread commercial use of MR fluid in a semi-active suspension system was implemented in passenger cars. The magnetorheological shock absorber can combine the comfort with the dynamic driving, because it allows the damping characteristic to be adapted to the road profile. The main objective of the paper is to analyze the dynamic behavior of the magnetorheological shock absorber in the semi-active suspension. In this sense, the author carried out a set of experimental measurements with a damping test bench, specially built and equipped with modern equipment. The results obtained from the experimental determinations show a significantly improved comfort when using a magnetorheological shock absorber, compared to a classic one, by the fact that the magnetorheological shock absorber allows to modify the damping coefficient according to the road conditions, thus maintaining the permanent contact between the tire and the road due to increased damping force.


Author(s):  
Naresh K. Chandiramani ◽  
Gokarna B. Motra

Seismic response control of buildings connected by a magnetorheological damper (MRD) is studied. The desired control force is obtained using Linear Quadratic Gaussian (LQG) control with feedback of estimated states, or Optimal Static Output Feedback (OSOF) control using direct feedback of outputs. The damper input voltage is predicted using a Recurrent Neural Network (RNN). Various sensor configurations and state weightings are considered to obtain effective control. Effective control is possible using few sensors (eg. a single accelerometer with LQG-RNN).


2021 ◽  
pp. 095745652110003
Author(s):  
VSV Satyanarayana ◽  
LVV Gopala Rao ◽  
B Sateesh ◽  
N Mohan Rao

This article aims to determine the optimum parameters of a half-car model passive suspension vehicle passing on a random road. The optimum parameters are obtained based on the response of linear quadratic regulator control with a look-ahead preview for attaining the passive suspension performance nearly equivalent to the active suspension performance. The optimum parameters are estimated by equalizing mean square suspension controlling forces of passive and active vehicle models and subsequently minimizing the performance error between the two systems. The response of passive suspension with optimized parameters matches approximately with the active suspension response, with respect to ride comfort and road holding.


2021 ◽  
Vol 2061 (1) ◽  
pp. 012138
Author(s):  
Vu Hai Quan ◽  
Nguyen Huy Truong ◽  
Nguyen Trong Duc

Abstract This paper presents an application of the LQR active suspension control algorithm for a vertical planar oscillation model developed for ¼ of a vehicle. The wheel smoothness and dynamics with the road surface are two parameters to provide control signals. A simulation model is developed here based on MATLAB software to compare and evaluate the LQR active suspension model with the passive suspension. The results obtained here shows an improvement for a number of parameters when utilizing the active suspension model including fluctuating amplitude; oscillation damping time; the displacement acceleration of the active suspension body.


2018 ◽  
Vol 8 (4) ◽  
pp. 3218-3222
Author(s):  
R. N. Yerrawar ◽  
R. R. Arakerimath

Magnetorheological (MR) strut is among the leading advanced applications of semi-active suspension systems. The damping force of MR damper is controlled by varying the viscosity of MR fluid. In this work, the viscosity of MR damper varies by changing the current from 0.5A to 0.7A. The design of experiments is taken into account in concert with the product/process development as one completely advanced tool. The parameters used for ride comfort optimization are sprung mass, spring stiffness, tire pressure, current, and cylinder material with two levels of each. Taguchi orthogonal array method is used to select the best results by parameter optimization with a minimum number of test runs. In this paper, from Taguchi L16 array and S/N ratio analysis, it is observed that the cylinder material with Al and CS for damper cylinder is a key parameter for performance measure of semi-active suspension system. From regression analysis, a linear mathematical model is developed for Al and CS as cylinder materials. The interaction of cylinder materials with all four parameters is plotted. The methodology implemented for measurement of acceleration as a ride comfort is as per IS 2631-1997. The more economical model of magnetorheological damper will motivate Indian auto industry to broader applications.


2018 ◽  
Vol 211 ◽  
pp. 02004
Author(s):  
Matheus Melo ◽  
Suzana Avila

The vehicle suspension isolates the chassis from road irregularities, reacting to forces produced by the tires and the braking torques, always keeping the road tire contact, providing stability and safety. Stability and safety are two antagonistic characteristics in suspension design, when improving one the other is impaired and vice versa. The semi-active suspension is a type of vehicle suspension that can change its stiffness and/or damping in real time depending on the vehicle response to the actual road profile. The On-Off semi-active suspension changes its damping coefficient between two fixed limit values. This work proposes an On-Off semi-active suspension model, in which the damping coefficient changes its values considering the road profile function frequency. A control strategy is proposed in a way to improve performance keeping the same simplicity, without any structural change of the semi-active suspension. On the proposed control strategy one of the damping coefficients is obtained through the linear quadratic regulator (LQR) algorithm, with the aim to set the coefficient from the gain matrix associated to the velocity of the suspended mass. This model is compared to anothers found in literature.


2020 ◽  
Vol 225 (13) ◽  
pp. 107-113
Author(s):  
Vũ Văn Tấn

Hệ thống treo là một trong những bộ phận quan trọng nhất trong thiết kế ô tô và là yếu tố quyết định đến sự thoải mái của lái xe, hành khách (độ êm dịu) và giữ được bám giữa lốp và mặt đường (độ an toàn). Bài báo này giới thiệu một mô hình ¼ ô tô có 2 bậc tự do sử dụng hệ thống treo chủ động với hai bộ điều khiển tối ưu: linear quadratic regulator và linear quadratic gaussian (linear quadratic regulator kết hợp với bộ quan sát Kalman-Bucy). Bằng cách sử dụng bộ quan sát Kalman-Bucy, số lượng cảm biến dùng để đo đạc các tín hiệu đầu vào của bộ điều khiển linear quadratic regulator đã được giảm thiểu tối đa chỉ còn các cảm biến thông thường như gia tốc của khối lượng được treo. Độ êm dịu và an toàn chuyển động khi ô tô sử dụng hệ thống treo chủ động được so sánh với ô tô sử dụng hệ thống treo bị động thông thường thông qua dịch chuyển của khối lượng được treo và gia tốc của nó. Kết quả mô phỏng đã thể hiện rõ giá trị sai lệch bình phương trung bình của gia tốc dịch chuyển thân xe với hệ thống treo tích cực điều khiển tối ưu linear quadratic regulator, linear quadratic gaussian đã giảm khoảng 20% so với ô tô sử dụng hệ thống treo bị động.


Sign in / Sign up

Export Citation Format

Share Document