Transient Analysis of Downtimes and Bottleneck Dynamics in Serial Manufacturing Systems

Author(s):  
Qing Chang ◽  
Stephan Biller ◽  
Guoxian Xiao

In manufacturing industry, downtimes have been considered as major impact factors of production performance. However, the real impacts of downtime events and relationships between downtimes and system performance and bottlenecks are not as trivial as it appears. To improve the system performance in real-time and to properly allocate limited resources/efforts to different stations, it is necessary to quantify the impact of each station downtime event on the production throughput of the whole transfer line. A complete characterization of the impact requires a careful investigation of the transients of the line dynamics disturbed by the downtime event. We study in this paper the impact of downtime events on the performance of inhomogeneous serial transfer lines. Our mathematical analysis suggests that the impact of any isolated downtime event is only apparent in the relatively long run when the duration exceeds a certain threshold called opportunity window. We also study the bottleneck phenomenon and its relationship with downtimes and opportunity window. The results are applicable to real-time production control, opportunistic maintenance scheduling, personnel staffing, and downtime cost estimation.

Author(s):  
Qing Chang ◽  
Jianbo Liu ◽  
Stephan Biller ◽  
Guoxian Xiao

In manufacturing industry, downtimes have been considered as major impact factors of production performance. To improve the system performance in real-time and properly allocate limited resources/efforts to different stations, it is necessary to quantify the impact of each station downtime event on the production throughput of the whole transfer line. Complete characterization of the impact requires a careful investigation of the transients of the line dynamics disturbed by the downtime event. We study in this paper, the impact of single isolated downtime event on the performance of inhomogeneous serial transfer lines. Our mathematical analysis suggests that the impact of any isolated downtime event is only apparent in the relatively long run when the duration exceeds a certain threshold called opportunity window. The size of the opportunity window not only depends on the initial buffer levels but also depends on the location and the processing speed of the slowest station. Analytical solutions of the opportunity window and the loose upper bounds for the recovery time are also provided in the paper as two separate theorems. Despite the fact that the paper focuses on the transient analysis of single isolated downtime event, the results are applicable to opportunistic maintenance scheduling, personnel staffing and downtime cost estimation.


2021 ◽  
Vol 13 (8) ◽  
pp. 195
Author(s):  
Akash Gupta ◽  
Adnan Al-Anbuky

Hip fracture incidence is life-threatening and has an impact on the person’s physical functionality and their ability to live independently. Proper rehabilitation with a set program can play a significant role in recovering the person’s physical mobility, boosting their quality of life, reducing adverse clinical outcomes, and shortening hospital stays. The Internet of Things (IoT), with advancements in digital health, could be leveraged to enhance the backup intelligence used in the rehabilitation process and provide transparent coordination and information about movement during activities among relevant parties. This paper presents a post-operative hip fracture rehabilitation model that clarifies the involved rehabilitation process, its associated events, and the main physical movements of interest across all stages of care. To support this model, the paper proposes an IoT-enabled movement monitoring system architecture. The architecture reflects the key operational functionalities required to monitor patients in real time and throughout the rehabilitation process. The approach was tested incrementally on ten healthy subjects, particularly for factors relevant to the recognition and tracking of movements of interest. The analysis reflects the significance of personalization and the significance of a one-minute history of data in monitoring the real-time behavior. This paper also looks at the impact of edge computing at the gateway and a wearable sensor edge on system performance. The approach provides a solution for an architecture that balances system performance with remote monitoring functional requirements.


2012 ◽  
Vol 490-495 ◽  
pp. 1704-1708
Author(s):  
Shao Wei Feng ◽  
Jing Zhang ◽  
Shao Chun Ding

It is very important to improve shop production performance in manufacturing process. The main manufacturing management methods include Kanban and Drum Buffer Rope (DBR) systems. In this paper computer simulation is used to evaluate the performance of these manufacturing systems. A simulation model was developed to collect and analyze some key performance indexes including total system output, flow time and average WIP invention. The optimal buffer size was found out by studying the two manufacturing systems at different capacities. The systems were also compared with and without machine breakdowns. The simulation model provided a significant insight into the two systems and the benefits of both the systems were realized


2021 ◽  
Author(s):  
Mairi Kerin ◽  
Duc Truong Pham ◽  
Jun Huang ◽  
Jeremy Hadall

Abstract A digital twin is a “live” virtual replica of a sensorised component, product, process, human, or system. It accurately copies the entity being modelled by capturing information in real time or near real time from the entity through embedded sensors and the Internet-of-Things. Many applications of digital twins in manufacturing industry have been investigated. This article focuses on the development of product digital twins to reduce the impact of quantity, quality, and demand uncertainties in remanufacturing. Starting from issues specific to remanufacturing, the article derives the functional requirements for a product digital twin for remanufacturing and proposes a UML model of a generic asset to be remanufactured. The model has been demonstrated in a case study which highlights the need to translate existing knowledge and data into an integrated system to realise a product digital twin, capable of supporting remanufacturing process planning.


Author(s):  
Binghai Zhou ◽  
Jiahui Xu

Multiple-load carriers are widely introduced for material delivery in manufacturing systems. The real-time scheduling of multiple-load carriers is so complex that it deserves attention to pursue higher productivity and better system performance. In this paper, a support vector machine (SVM)-based real-time scheduling mechanism was proposed to tackle the scheduling problem of parts replenishment with multiple-load carriers in automobile assembly plants under dynamic environment. The SVM-based scheduling mechanism was trained first and then used to make the optimal real-time decisions between “wait” and “deliver” on the basis of real-time system states. An objective function considering throughput and delivery distances was established to evaluate the system performance. Moreover, a simulation model in eM-Plant software was developed to validate and compare the proposed SVM-based scheduling mechanism with the classic minimum batch size (MBS) heuristic. It simulated both the steady and dynamic environments which are characterized by the uncertainty of demands or scheduling criteria. The simulation results demonstrated that the SVM-based scheduling mechanism could dynamically make optimal real-time decisions for multiple-load carriers and outperform the MBS heuristic as well.


2011 ◽  
Vol 130-134 ◽  
pp. 3888-3892
Author(s):  
Ya Liang Wang ◽  
Yong Chen

The original equipment manufacturing mode of the multi-species, multi-process and multi-unit is the main mode in Zhejiang manufacturing industry, the workshop layout affect directly the production efficiency and cost. The paper analyzed the impact factors of discrete operations workshop layout, established the Multi-Agent mathematical model of discrete operations workshop layout by using Multi-Agent theory, put forward the objective function of the workshop layout, and carried out empirical study by typical enterprises. By analyzing raw data of ZJ manufacturing enterprise, brought forward two layout programs based on mathematical model of Multi-Agent, evaluated the benefits and chose the better one of the two programs according to the objective function. The results after the implementation showed that the logistics measuring pitch of the program after selection is small, and the workshop area utilization is higher, and the equipment cost is reasonable. The model and optimization technology of discrete operations workshop layout based on Multi-Agent theory has important practical significance and good feasibility.


2014 ◽  
Vol 926-930 ◽  
pp. 1493-1496
Author(s):  
Xiang Qian Ding ◽  
Wei Dong Zhang ◽  
Rui Chun Hou

In view of the current discrete manufacturing workshop production process control problem of poor real-time performance, reliability, this paper proposes a discrete manufacture based on rfid technology workshop production process control system solutions. For discrete manufacturing enterprise workshop layer of the production process control system emphasizes the manufacturing process of real-time data acquisition, validity and enforceability of the production plan. Developed a discrete manufacturing process control system based on RFID, provides the foundation for just-in-time production of discrete manufacturing.


Author(s):  
Waleed Umer ◽  
Mohsin K. Siddiqui

Ultra wide band (UWB)-based real-time location systems (RTLSs) have been widely adopted in the manufacturing industry for tracking tools, materials, and ensuring safety. Researchers in the construction domain have investigated similar uses for UWB-based RTLSs on construction jobsites. However, most of these investigations comprised small-scale experiments using average accuracy only to demonstrate use cases for the technology. Furthermore, they did not consider alternative deployment scenarios for practically feasible deployment of the technology. To overcome these limitations, a series of experiments were performed to study the feasibility of a commercially available RTLS on the construction jobsites. The focus of the work was on feasibility in terms of accuracy analysis of the system for a large experimental site, the level of effort requirements for deployment, and the impact of deployment alternatives on the accuracy of the system. The results found that average accuracy was found to be a misleading indicator of the perceived system performance (i.e., 95th percentile values were considerably higher than average values). Moreover, accuracy is significantly affected by the deployment alternatives. Collectively, the results arising from the study could help construction/safety managers in decision making related to the deployment of UWB-based RTLSs for their construction sites.


2021 ◽  
Author(s):  
Foluke Ajisafe ◽  
Mark Reid ◽  
Hank Porter ◽  
Lydia George ◽  
Rhonna Wu ◽  
...  

Abstract Increased drilling of infill wells in the Bakken has led to growing concern over the effects of frac or fracture hits between parent and infill wells. Fracture hits can cause decreased production in a parent well, as well as other negative effects such as wellbore sanding, casing damage, and reduced production performance from the infill well. An operator had an objective to maximize production of infill wells and decrease the frequency and severity of frac hits to parent wells. The goal was to maintain production of the parent wells and avoid sanding, which had the potential to cause cleanouts. Infill well completion technologies were successfully implemented on multiwell pads in Mountrail County, Williston basin, to minimize parent-child well interference or negative frac hits on parent wells for optimized production. Four infill (child) wells were landed in the Three Forks formation directly below a group of six parent wells landed in the Middle Bakken. The infill well completion technologies used in this project to mitigate frac hits included far-field diverter, near-wellbore diverter, and real-time pressure monitoring. The far-field diverter design includes a blend of multimodal particles to bridge the fracture tip, preventing excessive fracture length and height growth. The near-wellbore diverter consists of a proprietary blend of degradable particles with a tetra modal size distribution and fibers used to achieve sequential stimulation of perforated clusters to maximize wellbore coverage. Hydraulic fracture modeling with a unique advanced particle transport model was used to predict the impact of the far-field diverter design on fracture geometry. Real-time pressure monitoring allowed acquisition of parent well pressure data to identify pressure communication or lack of communication and implement mitigation and contingency procedures as necessary. Real-time pressure monitoring was also used to optimize and validate the far-field diversion design during the job execution. The parent well monitored was 800 ft away from the closest infill well and at high risk for frac hits due to both the proximity to the infill well and depletion. In the early stages of the infill well stimulation, an increase in pressure up to 600 psi was observed in the parent well. The far-field diverter design was modified to combat the observed frac hit, after which a noticeable drop in both frequency and magnitude of frac hits was observed on the parent well. This is the first time the far-field diverter design optimization process was done in real time. After the infill wells stimulation treatment, production results showed a positive uplift in oil production for all parent wells at an average of 118%. Also, only two out of seven parent wells required a full cleanout, resulting in savings in well cleanup costs. Infill well production data was compared with the closest parent well landed in the same formation (Three Forks). At about a year, the best infill well production was only 10% less than the parent well with similar completion design and the average infill well production approximately 18% less than the parent well. Considering the depletion surrounding the infill wells, production performance exceeded expectations.


Sign in / Sign up

Export Citation Format

Share Document