scholarly journals A Generic Asset Model for Implementing Product Digital Twins in Smart Remanufacturing

Author(s):  
Mairi Kerin ◽  
Duc Truong Pham ◽  
Jun Huang ◽  
Jeremy Hadall

Abstract A digital twin is a “live” virtual replica of a sensorised component, product, process, human, or system. It accurately copies the entity being modelled by capturing information in real time or near real time from the entity through embedded sensors and the Internet-of-Things. Many applications of digital twins in manufacturing industry have been investigated. This article focuses on the development of product digital twins to reduce the impact of quantity, quality, and demand uncertainties in remanufacturing. Starting from issues specific to remanufacturing, the article derives the functional requirements for a product digital twin for remanufacturing and proposes a UML model of a generic asset to be remanufactured. The model has been demonstrated in a case study which highlights the need to translate existing knowledge and data into an integrated system to realise a product digital twin, capable of supporting remanufacturing process planning.

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8194
Author(s):  
Mehdi Kherbache ◽  
Moufida Maimour ◽  
Eric Rondeau

The Industrial Internet of Things (IIoT) is known to be a complex system because of its severe constraints as it controls critical applications. It is difficult to manage such networks and keep control of all the variables impacting their operation during their whole lifecycle. Meanwhile, Digital Twinning technology has been increasingly used to optimize the performances of industrial systems and has been ranked as one of the top ten most promising technological trends in the next decade. Many Digital Twins of industrial systems exist nowadays but only few are destined to networks. In this paper, we propose a holistic digital twinning architecture for the IIoT where the network is integrated along with the other industrial components of the system. To do so, the concept of Network Digital Twin is introduced. The main motivation is to permit a closed-loop network management across the whole network lifecycle, from the design to the service phase. Our architecture leverages the Software Defined Networking (SDN) paradigm as an expression of network softwarization. Mainly, the SDN controller allows for setting up the connection between each Digital Twin of the industrial system and its physical counterpart. We validate the feasibility of the proposed architecture in the process of choosing the most suitable communication mechanism that satisfies the real-time requirements of a Flexible Production System.


2020 ◽  
Vol 4 (1) ◽  
pp. 68
Author(s):  
Florian Blaschke ◽  
Biewendt Marcel ◽  
Böhnert Arno

Rapid development of virtual and data acquisition technology makes Digital Twin Technology (DT) one of the fundamental areas of research, while DT is one of the most promissory developments for the achievement of Industry 4.0. 48% percent of organisations implementing the Internet of Things are already using DT or plan to use DT in 2020. The global market for DT is expected to grow by 38 percent annually, reaching USD16 billion by 2023. In addition, the number of participating organisations using digital twins is expected to triple by 2022. DTs are characterised by the integration between physical and virtual spaces. The driving idea for DT is to develop, test and build our devices in a virtual environment. The objective of this paper is to study the impact of DT in the automotive industry on the new marketing logic. This paper outlines the current challenges and possible directions for the future DT in marketing. This paper will be helpful for managers in the industry to use the advantages and potentials of DT.


2021 ◽  
Vol 13 (8) ◽  
pp. 195
Author(s):  
Akash Gupta ◽  
Adnan Al-Anbuky

Hip fracture incidence is life-threatening and has an impact on the person’s physical functionality and their ability to live independently. Proper rehabilitation with a set program can play a significant role in recovering the person’s physical mobility, boosting their quality of life, reducing adverse clinical outcomes, and shortening hospital stays. The Internet of Things (IoT), with advancements in digital health, could be leveraged to enhance the backup intelligence used in the rehabilitation process and provide transparent coordination and information about movement during activities among relevant parties. This paper presents a post-operative hip fracture rehabilitation model that clarifies the involved rehabilitation process, its associated events, and the main physical movements of interest across all stages of care. To support this model, the paper proposes an IoT-enabled movement monitoring system architecture. The architecture reflects the key operational functionalities required to monitor patients in real time and throughout the rehabilitation process. The approach was tested incrementally on ten healthy subjects, particularly for factors relevant to the recognition and tracking of movements of interest. The analysis reflects the significance of personalization and the significance of a one-minute history of data in monitoring the real-time behavior. This paper also looks at the impact of edge computing at the gateway and a wearable sensor edge on system performance. The approach provides a solution for an architecture that balances system performance with remote monitoring functional requirements.


This chapter looks at the extent to which the semantic-based process mining approach of this book supports the conceptual analysis of the events logs and resultant models. Qualitatively, the chapter leverages the use case study of the research learning process domain to determine how the proposed method support the discovery, monitoring, and enhancement of the real-time processes through the abstraction levels of analysis. Also, the chapter quantitatively assesses the level of accuracy of the classification process to predict behaviours of unobserved instances within the underlying knowledge base. Overall, the work looks at the implications of the semantic-based approach, validation of the classification results, and their influence compared to other existing benchmark techniques/algorithms used for process mining.


2020 ◽  
pp. 2053-2080
Author(s):  
Cem Okan Tuncel ◽  
Ayda Polat

This study concerns the long wave theory of capitalist development with an aim to discuss and analyze the impact of nanotechnology on manufacturing industry. Long wave theory was asserted by Russian economist Kondratieff and it states the capitalist development with subsequent cycles which last 40 to 60 years each. The theory of Kondratieff was also contributed by other scholars as Schumpeter, Freeman, and Perez. Our research attempts to review how nanotechnology contributes economic growth, and how it changes the structure of manufacturing industry at the eve of the sixth Kondratieff wave. This structure was examined by using comparative case study of European Union, East Asian Newly Industrialized Countries and Middle East and North African (MENA) countries.


2020 ◽  
Vol 10 (10) ◽  
pp. 3633
Author(s):  
Luis Pérez ◽  
Silvia Rodríguez-Jiménez ◽  
Nuria Rodríguez ◽  
Rubén Usamentiaga ◽  
Daniel F. García

Intelligent automation, including robotics, is one of the current trends in the manufacturing industry in the context of “Industry 4.0”, where cyber-physical systems control the production at automated or semi-automated factories. Robots are perfect substitutes for a skilled workforce for some repeatable, general, and strategically-important tasks. However, this transformation is not always feasible and immediate, since certain technologies do not provide the required degree of flexibility. The introduction of collaborative robots in the industry permits the combination of the advantages of manual and automated production. In some processes, it is necessary to incorporate robots from different manufacturers, thus the design of these multi-robot systems is crucial to guarantee the maximum quality and efficiency. In this context, this paper presents a novel methodology for process automation design, enhanced implementation, and real-time monitoring in operation based on creating a digital twin of the manufacturing process with an immersive virtual reality interface to be used as a virtual testbed before the physical implementation. Moreover, it can be efficiently used for operator training, real-time monitoring, and feasibility studies of future optimizations. It has been validated in a use case which provides a solution for an assembly manufacturing process.


Author(s):  
Xiao Liang ◽  
Gonçalo Homem de Almeida Correia ◽  
Bart van Arem

This paper proposes a method of assigning trips to automated taxis (ATs) and designing the routes of those vehicles in an urban road network, and also considering the traffic congestion caused by this dynamic responsive service. The system is envisioned to provide a seamless door-to-door service within a city area for all passenger origins and destinations. An integer programming model is proposed to define the routing of the vehicles according to a profit maximization function, depending on the dynamic travel times, which varies with the ATs’ flow. This will be especially important when the number of automated vehicles (AVs) circulating on the roads is high enough that their routing will cause delays. This system should be able to serve not only the reserved travel requests, but also some real-time requests. A rolling horizon scheme is used to divide one day into several periods in which both the real-time and the booked demand will be considered together. The model was applied to the real size case study city of Delft, the Netherlands. The results allow assessing of the impact of the ATs movements on traffic congestion and the profitability of the system. From this case-study, it is possible to conclude that taking into account the effect of the vehicle flows on travel time leads to changes in the system profit, the satisfied percentage and the driving distance of the vehicles, which highlights the importance of this type of model in the assessment of the operational effects of ATs in the future.


2020 ◽  
Vol 12 (6) ◽  
pp. 2307 ◽  
Author(s):  
Fabian Dembski ◽  
Uwe Wössner ◽  
Mike Letzgus ◽  
Michael Ruddat ◽  
Claudia Yamu

Cities are complex systems connected to economic, ecological, and demographic conditions and change. They are also characterized by diverging perceptions and interests of citizens and stakeholders. Thus, in the arena of urban planning, we are in need of approaches that are able to cope not only with urban complexity but also allow for participatory and collaborative processes to empower citizens. This to create democratic cities. Connected to the field of smart cities and citizens, we present in this paper, the prototype of an urban digital twin for the 30,000-people town of Herrenberg in Germany. Urban digital twins are sophisticated data models allowing for collaborative processes. The herein presented prototype comprises (1) a 3D model of the built environment, (2) a street network model using the theory and method of space syntax, (3) an urban mobility simulation, (4) a wind flow simulation, and (5) a number of empirical quantitative and qualitative data using volunteered geographic information (VGI). In addition, the urban digital twin was implemented in a visualization platform for virtual reality and was presented to the general public during diverse public participatory processes, as well as in the framework of the “Morgenstadt Werkstatt” (Tomorrow’s Cities Workshop). The results of a survey indicated that this method and technology could significantly aid in participatory and collaborative processes. Further understanding of how urban digital twins support urban planners, urban designers, and the general public as a collaboration and communication tool and for decision support allows us to be more intentional when creating smart cities and sustainable cities with the help of digital twins. We conclude the paper with a discussion of the presented results and further research directions.


2020 ◽  
Vol 10 (18) ◽  
pp. 6578
Author(s):  
Roman Bambura ◽  
Marek Šolc ◽  
Miroslav Dado ◽  
Luboš Kotek

The digital twin (DT) is undergoing an increase in interest from both an academic and industrial perspective. Although many authors proposed and described various frameworks for DT implementation in the manufacturing industry context, there is an absence of real-life implementation studies reported in the available literature. The main aim of this paper is to demonstrate feasibility of the DT implementation under real conditions of a production plant that is specializing in manufacturing of the aluminum components for the automotive industry. The implementation framework of the DT for engine block manufacturing processes consists of three layers: physical layer, virtual layer and information-processing layer. A simulation model was created using the Tecnomatix Plant Simulation (TPS) software. In order to obtain real-time status data of the production line, programmable logic control (PLC) sensors were used for raw data acquisition. To increase production line productivity, the algorithm for bottlenecks detection was developed and implemented into the DT. Despite the fact that the implementation process is still under development and only partial results are presented in this paper, the DT seems to be a prospective real-time optimization tool for the industrial partner.


Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 537 ◽  
Author(s):  
Rafael M. Soares ◽  
Maurício M. Câmara ◽  
Thiago Feital ◽  
José Carlos Pinto

Digital twins are rigorous mathematical models that can be used to represent the operation of real systems. This connection allows for deeper understanding of the actual states of the analyzed system through estimation of variables that are difficult to measure otherwise. In this context, the present manuscript describes the successful implementation of a digital twin to represent a four-stage multi-effect evaporation train from an industrial sugar-cane processing unit. Particularly, the complex phenomenological effects, including the coupling between thermodynamic and fluid dynamic effects, and the low level of instrumentation in the plant constitute major challenges for adequate process operation. For this reason, dynamic mass and energy balances were developed, implemented and validated with actual industrial data, in order to provide process information for decision-making in real time. For example, the digital twin was able to indicate failure of process sensors and to provide estimates for the affected variables in real time, improving the robustness of the operation and constituting an important tool for process monitoring.


Sign in / Sign up

Export Citation Format

Share Document