Dynamic Adaptation of Aerodynamic Flame Stabilization of a Premix Swirl Burner to Fuel Reactivity Using Fuel Momentum

Author(s):  
J. Sangl ◽  
C. Mayer ◽  
T. Sattelmayer

Due to the expected increase in available fuel gas variants in the future and the interest in independence from a specific fuel, fuel flexible combustion systems are required for future gas turbine applications. Changing the fuel used for lean premixed combustion can lead to serious reliability problems in gas turbine engines caused by the different physical and chemical properties of these gases. A new innovative approach to reach efficient, safe, and low-emission operation for fuels such as natural gas, syntheses gas, and hydrogen with the same burner is presented in this paper. The basic idea is to use the additionally available fuel momentum of highly reactive gases stemming from their lower Wobbe index (lower volumetric heating value and density) compared with lowly reactive fuels. Using fuel momentum opens the opportunity to influence the vortex dynamics of swirl burners designed for lowly reactive gases in a favorable way for proper flame stabilization of highly reactive fuels without changing the hardware geometry. The investigations presented in this paper cover the development of the optimum basic aerodynamics of the burner and the determination of the potential of the fuel momentum in water channel experiments using particle image velocimetry. The results show that proper usage of the fuel momentum has enough potential to adjust the flow field to different fuels and their corresponding flame behavior. As the main challenge is to reach flashback safe fuel flexible burner operation, the main focus of the study lies on avoiding combustion induced vortex breakdown. The mixing quality of the resulting injection strategy is determined by applying laser induced fluorescence in water channel tests. Additional OH∗ chemiluminescence and flashback measurements in an atmospheric combustion test rig confirm the water channel results for CH4, CH4/H2 mixtures, H2 with N2 dilution, and pure H2 combustion. They also indicate a large operating window between flashback and lean blow out and show expected NOx emission levels. In summary, it is shown for a conical four slot swirl generator geometry that the proposed concept of using the fuel momentum for tuning of the vortex dynamics allows aerodynamic flame stabilization for different fuels in the same burner.


Author(s):  
J. Sangl ◽  
C. Mayer ◽  
T. Sattelmayer

Due to the expected increase in available fuel gas variants in the future and the interest in independence from a specific fuel, fuel flexible combustion systems are required for future gas turbine applications. Changing the fuel used for lean premixed combustion can lead to serious reliability problems in gas turbine engines caused by the different physical and chemical properties of these gases. A new innovative approach to reach efficient, safe and low-emissions operation for fuels like natural gas, syntheses gas and hydrogen with the same burner is presented in this paper. The basic idea is to use the additionally available fuel momentum of highly reactive gases stemming from their lower Wobbe index (lower volumetric heating value and density) compared to lowly reactive fuels. Using fuel momentum opens the opportunity to influence the vortex dynamics of swirl burners designed for lowly reactive gases in a favorable way for proper flame stabilization of highly reactive fuels without changing the hardware geometry. The investigations presented in the paper cover the development of the optimum basic aerodynamics of the burner and the determination of the potential of the fuel momentum in water channel experiments using particle image velocimetry (PIV). The results show that a proper usage of the fuel momentum has enough potential to adjust the flow field to the different fuels and their corresponding flame behavior. As the main challenge is to reach flashback safe fuel flexible burner operation, the main focus of the study lies on avoiding combustion induced vortex breakdown (CIVB). The mixing quality of the resulting injection strategy is determined applying laser induced fluorescence (LIF) in water channel tests. Additional OH* chemiluminescence and flashback measurements in an atmospheric combustion test rig confirm the water channel results for CH4, CH4/H2 mixtures, H2 with N2 dilution and pure H2 combustion. They also indicate a large operating window between flashback and lean blow out and show expected NOx emission levels. In summary, it is shown for a conical four slot swirl generator geometry that the proposed concept of using the fuel momentum for tuning of the vortex dynamics allows aerodynamic flame stabilization for different fuels in the same burner.



Author(s):  
Ahmed E. E. Khalil ◽  
Ashwani K. Gupta

Colorless Distributed Combustion (also referred to as CDC) has been shown to provide ultra-low emissions and enhanced performance of high intensity gas turbine combustors. To achieve distributed combustion, the flowfield needs to be tailored for adequate mixing between reactants and hot reactive species from within the combustor to result in high temperature low oxygen concentration environment prior to ignition. Such reaction distribution results in uniform thermal field and also eliminates any hot spots for mitigating NOx emission. Though CDC have been extensively studied using a variety of geometries, heat release intensities, and fuels, the role of internally recirculated hot reactive gases needs to be further investigated and quantified. In this paper, the impact of internal entrainment of reactive gases on flame structure and behavior is investigated with focus on fostering distributed combustion and providing guidelines for designing future gas turbine combustors operating in distributed combustion mode. To simulate the recirculated gases from within the combustor, a mixture of nitrogen and carbon dioxide is introduced to the air stream prior to mixing with fuel and subsequent combustion. Increase in the amounts of nitrogen and carbon dioxide (simulating increased entrainment), led to volume distributed reaction over a larger volume in the combustor with enhanced and uniform distribution of the OH* chemiluminescence intensity. At the same time, the bluish flame stabilized by the swirler is replaced with a more uniform almost invisible bluish flame. The increased recirculation also reflected on the pollutants emission, where NO emissions were significantly decreased for the same amount of fuel burned. Lowering oxygen concentration from 21% to 15% (due to increased recirculation) resulted in 80∼90% reduction in NO with no impact on CO emission with sub PPM NO emission achieved at an equivalence ratio of 0.7. Flame stabilization at excess recirculation can be achieved using preheated nitrogen and carbon dioxide, achieving true distributed conditions with oxygen concentration below 13%.



Author(s):  
Stephan Burmberger ◽  
Thomas Sattelmayer

A frequently employed method for aerodynamic flame stabilization in modern premixed low emission combustors is the breakdown of swirling flows; with carefully optimized tailoring of the swirler, a sudden transition in the flow field in the combustor can be achieved. A central recirculation zone evolves at the cross-sectional area change located at the entrance of the combustion chamber and anchors the flame in a fixed position. In general, premixed combustion in swirling flows can lead to flame flashback that is caused by combustion induced vortex breakdown near the centerline of the flow. In this case, the recirculation zone suddenly moves upstream and stabilizes in the premix zone (Kröner , 2007, “Flame Propagation in Swirling Flows—Effect of Local Extinction on the Combustion Induced Vortex Breakdown,” Combust. Sci. Technol., 179, pp. 1385–1416). This type of flame flashback is caused by a strong interaction between the flame chemistry and vortex dynamics. The analysis of the vorticity transport equation shows that the axial gradient of the azimuthal vorticity is of particular importance for flame stability. A negative azimuthal vorticity gradient decelerates the core flow and finally causes vortex breakdown. Based on fundamental fluid mechanics, guidelines for a proper aerodynamic design of gas turbine combustors are given. These guidelines summarize the experience from several previous aerodynamic and combustion studies of the authors.



1988 ◽  
Author(s):  
Melvyn S. Berger


Author(s):  
Daniel Guyot ◽  
Thiemo Meeuwissen ◽  
Dieter Rebhan

Reducing gas turbine emissions and increasing their operational flexibility are key targets in today’s gas turbine market. In order to further reduce emissions and increase the operational flexibility of its GT24, Alstom has introduced an internally staged premix system into the GT24’s EV combustor. This system features a rich premix mode for GT start-up and a lean premix mode for GT loading and baseload operation. The fuel gas is injected through two premix stages, one injecting fuel into the burner air slots and one injecting fuel into the centre of the burner cone. Both premix stages are in continuous operation throughout the entire operating range, i.e. from ignition to baseload, thus eliminating the previously used pilot operation during start-up with its diffusion-type flame and high levels of NOx formation. The staged EV combustion concept is today a standard on the current GT26 and GT24. The EV burners of the GT26 are identical to the GT24 and fully retrofittable into existing GT24 engines. Furthermore, engines operating only on fuel gas (i.e. no fuel oil operation) no longer require a nitrogen purge and blocking air system so that this system can be disconnected from the GT. Only minor changes to the existing GT24 EV combustor and fuel distribution system are required. This paper presents validation results for the staged EV burner obtained in a single burner test rig at full engine pressure, and in a GT24 field engine, which had been upgraded with the staged EV burner technology in order to reduce emissions and extend the combustor’s operational behavior.



1981 ◽  
Vol 103 (1) ◽  
pp. 34-42 ◽  
Author(s):  
J. R. Shekleton

The Radial Engine Division of Solar Turbines International, an Operating Group of International Harvester, under contract to the U.S. Army Mobility Equipment Research & Development Command, developed and qualified a 10 kW gas turbine generator set. The very small size of the gas turbine created problems and, in the combustor, novel solutions were necessary. Differing types of fuel injectors, combustion chambers, and flame stabilizing methods were investigated. The arrangement chosen had a rotating cup fuel injector, in a can combustor, with conventional swirl flame stabilization but was devoid of the usual jet stirred recirculation. The use of centrifugal force to control combustion conferred substantial benefit (Rayleigh Instability Criteria). Three types of combustion processes were identified: stratified and unstratified charge (diffusion flames) and pre-mix. Emphasis is placed on five nondimensional groups (Richardson, Bagnold, Damko¨hler, Mach, and Reynolds numbers) for the better control of these combustion processes.



Author(s):  
Joseph Rabovitser ◽  
Stan Wohadlo ◽  
John M. Pratapas ◽  
Serguei Nester ◽  
Mehmet Tartan ◽  
...  

Paper presents the results from development and successful testing of a 200 kW POGT prototype. There are two major design features that distinguish POGT from a conventional gas turbine: a POGT utilizes a partial oxidation reactor (POR) in place of a conventional combustor which leads to a much smaller compressor requirement versus comparably rated conventional gas turbine. From a thermodynamic perspective, the working fluid provided by the POR has higher specific heat than lean combustion products enabling the POGT expander to extract more energy per unit mass of fluid. The POGT exhaust is actually a secondary fuel gas that can be combusted in different bottoming cycles or used as synthesis gas for hydrogen or other chemicals production. Conversion steps for modifying a 200 kW radial turbine to POGT duty are described including: utilization of the existing (unmodified) expander; replacement of the combustor with a POR unit; introduction of steam for cooling of the internal turbine structure; and installation of a bypass air port for bleeding excess air from the compressor discharge because of 45% reduction in combustion air requirements. The engine controls that were re-configured for start-up and operation are reviewed including automation of POGT start-up and loading during light-off at lean condition, transition from lean to rich combustion during acceleration, speed control and stabilization under rich operation. Changes were implemented in microprocessor-based controllers. The fully-integrated POGT unit was installed and operated in a dedicated test cell at GTI equipped with extensive process instrumentation and data acquisition systems. Results from a parametric experimental study of POGT operation for co-production of power and H2-enriched synthesis gas are provided.



Author(s):  
Thormod Andersen ◽  
Hanne M. Kvamsdal ◽  
Olav Bolland

A concept for capturing and sequestering CO2 from a natural gas fired combined cycle power plant is presented. The present approach is to decarbonise the fuel prior to combustion by reforming natural gas, producing a hydrogen-rich fuel. The reforming process consists of an air-blown pressurised auto-thermal reformer that produces a gas containing H2, CO and a small fraction of CH4 as combustible components. The gas is then led through a water gas shift reactor, where the equilibrium of CO and H2O is shifted towards CO2 and H2. The CO2 is then captured from the resulting gas by chemical absorption. The gas turbine of this system is then fed with a fuel gas containing approximately 50% H2. In order to achieve acceptable level of fuel-to-electricity conversion efficiency, this kind of process is attractive because of the possibility of process integration between the combined cycle and the reforming process. A comparison is made between a “standard” combined cycle and the current process with CO2-removal. This study also comprise an investigation of using a lower pressure level in the reforming section than in the gas turbine combustor and the impact of reduced steam/carbon ratio in the main reformer. The impact on gas turbine operation because of massive air bleed and the use of a hydrogen rich fuel is discussed.



2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Andreas Schwärzle ◽  
Thomas O. Monz ◽  
Andreas Huber ◽  
Manfred Aigner

Jet-stabilized combustion is a promising technology for fuel flexible, reliable, highly efficient combustion systems. The aim of this work is a reduction of NOx emissions of a previously published two-stage micro gas turbine (MGT) combustor (Zanger et al., 2015, “Experimental Investigation of the Combustion Characteristics of a Double-Staged FLOX-Based Combustor on an Atmospheric and a Micro Gas Turbine Test Rig,” ASME Paper No. GT2015-42313 and Schwärzle et al., 2016, “Detailed Examination of Two-Stage Micro Gas Turbine Combustor,” ASME Paper No. GT2016-57730), where the pilot stage (PS) of the combustor was identified as the main contributor to NOx emissions. The geometry optimization was carried out regarding the shape of the pilot dome and the interface between PS and main stage (MS) in order to prevent the formation of high-temperature recirculation zones. Both stages have been run separately to allow a detailed understanding of the flame stabilization within the combustor, its range of stable combustion, the interaction between both stages, and the influence of the modified geometry. All experiments were conducted at atmospheric pressure and an air preheat temperature of 650  °C. The flame was analyzed in terms of shape, length, and lift-off height, using OH* chemiluminescence (OH-CL) images. Emission measurements for NOx, CO, and unburned hydrocarbons (UHC) emissions were carried out. At a global air number of λ = 2, a fuel split variation was carried out from 0 (only PS) to 1 (only MS). The modification of the geometry leads to a decrease in NOx and CO emissions throughout the fuel split variation in comparison with the previous design. Regarding CO emissions, the PS operations are beneficial for a fuel split above 0.8. The local maximum in NOx emissions observed for the previous combustor design at a fuel split of 0.78 was not apparent for the modified design. NOx emissions were increasing, when the local air number of the PS was below the global air number. In order to evaluate the influence of the modified design on the flow field and identify the origin of the emission reduction compared to the previous design, unsteady Reynolds-averaged Navier–Stokes simulations were carried out for both geometries at fuel splits of 0.93 and 0.78, respectively, using the DLR (German Aerospace Center) in-house code turbulent heat release extension of the tau code (theta) with the k–ω shear stress transport turbulence model and the DRM22 (Kazakov and Frenklach, 1995, “DRM22,” University of California at Berkeley, Berkeley, CA, accessed Sept. 21, 2017, http://www.me.berkeley.edu/drm/) detailed reaction mechanism. The numerical results showed a strong influence of the recirculation zones on the PS reaction zone.



Sign in / Sign up

Export Citation Format

Share Document