Increasing Robustness of Input Shaping Method to Parametric Uncertainties and Time-Delays

Author(s):  
M. C. Pai ◽  
A. Sinha

The input shaping technique has proven to be highly effective in reducing or eliminating residual vibration of flexible structures. The exact elimination of the residual vibration via input shaping depends on the amplitudes and instants of utilized impulses. However, systems always have parametric uncertainties, which can lead to performance degradation. Furthermore, input shaping method does not deal with vibration excited by external disturbances and time-delays. In this paper, a closed-loop input shaping control scheme is developed for uncertain flexible structure and uncertain time-delay flexible structure systems. The algorithm is based on the sliding mode control and H∞/μ techniques. This scheme guarantees closed-loop system stability, and yields good performance and robustness in the presence of parametric uncertainties, time-delays and external disturbances as well. Also, it is shown that increasing the robustness to parametric uncertainties and time-delays does not lengthen the duration of the impulse sequence. Numerical examples are presented to verify the theoretical analysis.

2012 ◽  
Vol 19 (2) ◽  
pp. 221-233 ◽  
Author(s):  
Ming-Chang Pai

Input shaping technique is widely used in reducing or eliminating residual vibration of flexible structures. The exact elimination of the residual vibration via input shaping technique depends on the amplitudes and instants of impulse application. However, systems always have parameter uncertainties which can lead to performance degradation. In this paper, a closed-loop input shaping control scheme is developed for uncertain flexible structures. The algorithm is based on input shaping control and adaptive sliding mode control. The proposed scheme does not need a priori knowledge of upper bounds on the norm of the uncertainties, but estimates them by using the adaptation technique. This scheme guarantees closed-loop system stability, and yields good performance and robustness in the presence of parameter uncertainties and external disturbances as well. Furthermore, it is shown that increasing the robustness to parameter uncertainties does not lengthen the duration of the impulse sequence. Simulation results demonstrate the efficacy of the proposed closed-loop input shaping control scheme.


1999 ◽  
Vol 122 (3) ◽  
pp. 454-460 ◽  
Author(s):  
Vikram Kapila ◽  
Anthony Tzes ◽  
Qiguo Yan

Input shaping techniques reduce the residual vibration in flexible structures by convolving the command input with a sequence of impulses. The exact cancellation of the residual structural vibration via input shaping is dependent on the amplitudes and instances of impulse application. A majority of the current input shaping schemes are inherently open-loop where impulse application at inaccurate instances can lead to system performance degradation. In this paper, we develop a closed-loop control design framework for input shaped systems. This framework is based on the realization that the dynamics of input shaped systems give rise to time delays in the input. Thus, we exploit the feedback control theory of time delay systems for the closed-loop control of input shaped flexible structures. A Riccati equation-based and a linear matrix inequality-based frameworks are developed for the stabilization of systems with uncertain, multiple input delays. Next, the aforementioned framework is applied to two input shaped flexible structure systems. This framework guarantees closed-loop system stability and performance when the impulse train is applied at inaccurate instances. Two illustrative numerical examples demonstrate the efficacy of the proposed closed-loop input shaping controller. [S0022-0434(00)00103-9]


Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 33
Author(s):  
Romina Zarrabi Ekbatani ◽  
Ke Shao ◽  
Jasim Khawwaf ◽  
Hai Wang ◽  
Jinchuan Zheng ◽  
...  

The ionic polymer metal composite (IPMC) actuator is a kind of soft actuator that can work for underwater applications. However, IPMC actuator control suffers from high nonlinearity due to the existence of inherent creep and hysteresis phenomena. Furthermore, for underwater applications, they are highly exposed to parametric uncertainties and external disturbances due to the inherent characteristics and working environment. Those factors significantly affect the positioning accuracy and reliability of IPMC actuators. Hence, feedback control techniques are vital in the control of IPMC actuators for suppressing the system uncertainty and external disturbance. In this paper, for the first time an adaptive full-order recursive terminal sliding-mode (AFORTSM) controller is proposed for the IPMC actuator to enhance the positioning accuracy and robustness against parametric uncertainties and external disturbances. The proposed controller incorporates an adaptive algorithm with terminal sliding mode method to release the need for any prerequisite bound of the disturbance. In addition, stability analysis proves that it can guarantee the tracking error to converge to zero in finite time in the presence of uncertainty and disturbance. Experiments are carried out on the IPMC actuator to verify the practical effectiveness of the AFORTSM controller in comparison with a conventional nonsingular terminal sliding mode (NTSM) controller in terms of smaller tracking error and faster disturbance rejection.


2007 ◽  
Vol 129 (6) ◽  
pp. 851-855 ◽  
Author(s):  
M. C. Pai ◽  
A. Sinha

This paper presents a new approach for the robust control of vibration in a flexible structure in the presence of uncertain parameters and residual modes. The technique is based on the sliding mode control algorithm using direct output feedback and assumes that actuators and sensors are not collocated. The uncertainty matrix need not satisfy the invariance or matching conditions. The small gain theorem/μ analysis is applied to analyze the asymptotic behavior of the closed-loop system with parametric uncertainties inside boundary layers. The model of a flexible tetrahedral truss structure is used to conduct numerical verification of the theoretical analysis.


2003 ◽  
Vol 125 (3) ◽  
pp. 494-497 ◽  
Author(s):  
Lucy Y. Pao ◽  
Craig F. Cutforth

The technique of input shaping has been successfully applied to the problem of maneuvering flexible structures without excessive residual vibration. Because a shaper is designed such that vibration is eliminated at the end of the shaped input, a short shaper length means that vibration is eliminated sooner. As different shaper design methods yield different shapers, it is advantageous to know how the shaper lengths of these different methods compare. In this paper we draw comparisons between time-domain input shaping methods and frequency-domain input shaping methods after outlining conditions when non-negative amplitude shapers exist when using frequency-domain methods.


2020 ◽  
Vol 10 (18) ◽  
pp. 6219
Author(s):  
Zhongyi Guo ◽  
Haifeng Ma ◽  
Qinghua Song

The control design for many industrial applications requires compensation for parameter uncertainty and external disturbance. Reported in many previous works, the parameter uncertainty and external disturbance are combined as a lumped disturbance, which is assumed to be smooth and bounded. However, for a discrete-time sliding mode control (DSMC) system, the above assumption may not hold. Here, the parameter uncertainty, along with its compensation in the DSMC system, are reconsidered and reevaluated. The influence of parameter uncertainty on the closed-loop system stability is first addressed. Then, the comparative investigation of the performance of six state-of-the-art disturbance compensators for parameter uncertainty compensation is conducted. Simulation results show that none of these compensators can effectively observe and compensate for the parameter uncertainty.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zijun Gao ◽  
Jin Wang ◽  
Yaping Tian

This paper investigates the adaptive output feedback attitude control of a quadrotor. First, a nonsingular terminal sliding-mode variable and auxiliary variable are introduced into a closed-loop structure. Meanwhile, a fuzzy logic system is incorporated into an adaptive algorithm to compensate for the adverse influence caused by lumped disturbances including system uncertainty and external disturbances on the attitude adjustment performance of a quadrotor. Then, a novel finite-time output feedback controller equipped with the saturation suppression algorithm is designed. Rigorous proof shows that the design control strategy ensures the closed-loop system stability and guarantees the attitude of the spacecraft to track desired command signals in finite time. Simulation results are presented to illustrate the performance of the proposed control scheme.


Sign in / Sign up

Export Citation Format

Share Document