On the Cooling of Electronics With Nanofluids

2011 ◽  
Vol 133 (5) ◽  
Author(s):  
W. Escher ◽  
T. Brunschwiler ◽  
N. Shalkevich ◽  
A. Shalkevich ◽  
T. Burgi ◽  
...  

Nanofluids have been proposed to improve the performance of microchannel heat sinks. In this paper, we present a systematic characterization of aqueous silica nanoparticle suspensions with concentrations up to 31 vol %. We determined the particle morphology by transmission electron microscope imaging and its dispersion status by dynamic light scattering measurements. The thermophysical properties of the fluids, namely, their specific heat, density, thermal conductivity, and dynamic viscosity were experimentally measured. We fabricated microchannel heat sinks with three different channel widths and characterized their thermal performance as a function of volumetric flow rate for silica nanofluids at concentrations by volume of 0%, 5%, 16%, and 31%. The Nusselt number was extracted from the experimental results and compared with the theoretical predictions considering the change of fluids bulk properties. We demonstrated a deviation of less than 10% between the experiments and the predictions. Hence, standard correlations can be used to estimate the convective heat transfer of nanofluids. In addition, we applied a one-dimensional model of the heat sink, validated by the experiments. We predicted the potential of nanofluids to increase the performance of microchannel heat sinks. To this end, we varied the individual thermophysical properties of the coolant and studied their impact on the heat sink performance. We demonstrated that the relative thermal conductivity enhancement must be larger than the relative viscosity increase in order to gain a sizeable performance benefit. Furthermore, we showed that it would be preferable to increase the volumetric heat capacity of the fluid instead of increasing its thermal conductivity.

1999 ◽  
Vol 123 (3) ◽  
pp. 315-318 ◽  
Author(s):  
Keiji Sasao ◽  
Mitsuru Honma ◽  
Atsuo Nishihara ◽  
Takayuki Atarashi

A numerical method for simulating impinging air flow and heat transfer in plate-fin type heat sinks has been developed. In this method, all the fins of an individual heat sink and the air between them are replaced with a single, uniform element having an appropriate flow resistance and thermal conductivity. With this element, fine calculation meshes adapted to the shape of the actual heat sink are not needed, so the size of the calculation mesh is much smaller than that of conventional methods.


2009 ◽  
Vol 3 (2) ◽  
Author(s):  
M. Elwassif ◽  
A. Datta ◽  
M. Bikson

There is a growing interest in the use of Deep Brain Stimulation (DBS) for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. The extent of temperature increases around DBS electrodes during normal operation (joule heating and increased metabolic activity) or magnetic coupling (e.g., MRI) remain poorly understood, and methods to mitigate temperature increases are actively investigated. Indeed, brain function is especially sensitive to the changes in temperature including neuronal activity, metabolic functions, blood-brain barrier integrity, molecular stability, and viability. We developed technology to control tissue heating near DBS leads by modifying the thermal properties of lead materials. A micro-thermocouple was used to measure the temperature near DBS electrodes immersed in a saline bath. 3387 and 3389 Leads were energized using Medtronic DBS stimulators. The RMS of the driving voltage was monitored. Peak steady-state temperature was determined under different RMS values. A micro-positioning system was used, which allowed the generation of temperature field map. We developed and solved a finite element method (FEM) bio-heat transfer model of DBS incorporating realistic DBS lead architecture. The model was first validated using the experimental results (by matching saline thermal conductivity and electrical conductivity) and was then applied to develop methods to control temperature rises in the brain using heat-sink technology. Experimental measurements are consistent with theoretical predictions including: 1) Peak temperature increases directly with the RMS square of the applied voltage, such that different waveforms with the same RMS induce the same peak temperature rise; 2) Peak temperatures increases with contact proximity such the maximal temperature rise was observed using adjacent contacts of lead 3389; 3) Temperature decayed over ∼2 mm distance away from energized contacts. FEM results demonstrated the central role of lead materials (material properties and geometry) in controlling temperature rise by conducting heat: namely by acting as passive heat sinks. We report that the relatively high thermal conductivity of exiting DBS lead wiring affects the temperature field, indicating the importance of detailed lead architecture. We then demonstrate how modifying lead design to optimize heat conduction can effectively control temperature increases; the manifest advantages of this approach over complimentary heat-mitigation technologies is that heat-sink controls include: 1) insensitive to the mechanisms of heating (e.g., nature of magnetic coupling); 2) does not interfere with device efficacy (e.g., the electric fields induced in the tissue during stimulation are unaffected); and 3) can be practically implemented in a broad range of implanted devices (cardiac/neuro-prothethics, pumps...) without modifying device operation or implant procedure.


Author(s):  
Carlos Alberto Rubio-Jimenez ◽  
Abel Hernandez-Guerrero ◽  
Jose Cuauhtemoc Rubio-Arana ◽  
Satish Kandlikar

The present work shows a study developed of the thermal and hydrodynamic behaviors present in microchannel heat sinks formed by non-conventional arrangements. These arrangements are based on patterns that nature presents. There are two postulates that model natural forms in a mathematical way: the Allometric Law and the Biomimetic Tendency. Both theories have been applied in the last few years in different fields of science and technology. Using both theories, six models were analyzed (there are three cases proposed and both theories are applied to each case). Microchannel heat sinks with split channels are obtained as a result of applying these theories. Water is the cooling fluid of the system. The inlet hydraulic diameter is kept in each model in order to have a reference for comparison. The Reynolds number inside the heat sink remains below the transition Reynolds number value published by several researchers for this channel dimensions. The inlet Reynolds number of the fluid at the channel inlet is the same for each model. A heat flux is supplied to the bottom wall of the heat sink. The magnitude of this heat flux is 150 W/cm2. The temperature fields and velocity profiles are obtained for each case and compared.


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Y. J. Lee ◽  
P. S. Lee ◽  
S. K. Chou

Sectional oblique fins are employed, in contrast to continuous fins in order to modulate the flow in microchannel heat sinks. The breakage of a continuous fin into oblique sections leads to the reinitialization of the thermal boundary layer at the leading edge of each oblique fin, effectively reducing the boundary layer thickness. This regeneration of entrance effects causes the flow to always be in a developing state, thus resulting in better heat transfer. In addition, the presence of smaller oblique channels diverts a small fraction of the flow into adjacent main channels. The secondary flows created improve fluid mixing, which serves to further enhance heat transfer. Both numerical simulations and experimental investigations of copper-based oblique finned microchannel heat sinks demonstrated that a highly augmented and uniform heat transfer performance, relative to the conventional microchannel, is achievable with such a passive technique. The average Nusselt number, Nuave, for the copper microchannel heat sink which uses water as the working fluid can increase as much as 103%, from 11.3 to 22.9. Besides, the augmented convective heat transfer leads to a reduction in maximum temperature rise by 12.6 °C. The associated pressure drop penalty is much smaller than the achieved heat transfer enhancement, rendering it as an effective heat transfer enhancement scheme for a single-phase microchannel heat sink.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
T. L. Bergman

Heat transfer enhancement associated with use of a nanofluid coolant is analyzed for small electronic heat sinks. The analysis is based on the ε-NTU heat exchanger methodology, and is used to examine enhancement associated with use of H2O–Al2O3 nanofluids in a heat sink experiencing turbulent flow. Predictive correlations are generated to ascertain the degree of enhancement based on the fluid’s thermophysical properties. The enhancement is quite small, suggesting the limited usefulness of nanofluids in this particular application.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012052
Author(s):  
David Olugbenga Ariyo ◽  
Tunde Bello-Ochende

Abstract Deionized water at a temperature of 25 °C was used as the cooling fluid and aluminium as the heat sink material in the geometric optimization and parameter modelling of subcooled flow boiling in horizontal equilateral triangular microchannel heat sinks. The thermal resistances of the microchannels were minimized subject to fixed volume constraints of the heat sinks and microchannels. A computational fluid dynamics (CFD) ANSYS code used for both the simulations and the optimizations was validated by the available experimental data in the literature and the agreement was good. Fixed heat fluxes between 100 and 500 W/cm2 and velocities between 0.1 and 7.0 m/s were used in the study. Despite the relatively high heat fluxes in this study, the base temperatures of the optimal microchannel heat sinks were within the acceptable operating range for modern electronics. The pumping power requirements for the optimal microchannels are low, indicating that they can be used in the cooling of electronic devices.


2020 ◽  
Vol 20 (11) ◽  
pp. 6980-6984
Author(s):  
Yun Guang Li ◽  
Hyun Jin Yoo ◽  
Changyoon Baek ◽  
Junhong Min

Heat sinks that dissipate heat effectively play a significant role in devices with high-precision temperature control, such as thermal cyclers for polymerase chain reaction (PCR). This study was carried out to develop a heat sink with a high thermal conductivity to dissipate heat effectively. To increase the surface area of the heat sink, zinc oxide (ZnO) nanostructures were fabricated on an aluminum plate. ZnO nanostructures were fabricated by hydrothermal method and confirmed by scanning electron microscopy and X-ray diffraction. With the increase in the concentration of the precursors, the length of the nanorods increased, and with longer reaction time, nanostructures connected with higher stability and larger surface area. Thermal conductivity is increased by ZnO nanostructures and is affected by the concentration of precursors and the reaction time. Thermal conductivity of an optimal ZnO-coated Al plate is 2 times higher than that of a bare one. This technology can be applied to portable PCR devices to reduce weight, size, and power consumption.


Author(s):  
Sridhar Narasimhan ◽  
Avram Bar-Cohen

The present work considers the compact modeling of unshrouded parallel plate heat sinks in laminar forced convection. The computational domain includes three heat sinks in series, cooled by an intake fan. The two upstream heat sinks are represented as “porous blocks”, each with an effective thermal conductivity and a pressure loss coefficient, while the downstream heat sink, assumed to be the component requiring the most accurate characterization, is modeled in detail. A large parametric space covering three typical heat sink geometries, as well as a range of common inlet velocities, separation distances between the heat sinks, and bypass clearances is considered in the development and evaluation of the compact models. The current study uses a boundary layer-based methodology, accounting for both the viscous dissipation and form drag losses, to determine the pressure drop characteristics, and an effective conductivity methodology, using a flow bypass model and Nusselt number correlation, to determine the effective thermal conductivity, for the porous block representation of the heat sink. The results indicate that the introduction of compact heat sinks has little influence on the pressure drop of the critical heat sink. Good agreement in pressure drops, typically in the range of 5%, is also obtained between “detailed” heat sink models and their corresponding porous block representation. The introduction of the compact models is found to have little influence (typically less than 1°C) on the base temperature of the critical heat sinks. For the compact heat sinks, the agreement is again within a typical difference of 5% in thermal resistance. Dramatic improvements were observed in the mesh count (factor > 10X) and solution time (factor >20X) required to achieve a high-fidelity simulation of the velocity, pressure, and temperature fields.


Author(s):  
Dylan Farnam ◽  
Bahgat Sammakia ◽  
Kanad Ghose

Increasing power dissipation in microprocessors and other devices is leading to the consideration of more capable thermal solutions than the traditional air-cooled fin heat sinks. Microchannel heat sinks (MHSs) are promising candidates for long-term thermal solution given their simplicity, performance, and the development of MHS-compatible 3D device architecture. As the traditional methods of cooling generally have uniform heat removal on the contact area with the device, thermal consequences of design have traditionally been considered only after the layout of components on a device is finalized in accordance with connection and other criteria. Unlike traditional cooling solutions, however, microchannel heat sinks provide highly nonuniform heat removal on the contact area with the device. This feature is of utmost importance and can actually be used quite advantageously, if considered during the design phase of a device. In this study, simple thermal design criteria governing the general placement of components on devices to be cooled by microchannel heat sink are developed and presented. These thermal criteria are not meant to supersede connection and other important design criteria but are intended as a necessary and valuable supplement. Full-scale numerical simulations of a device with a realistic power map cooled by microchannel heat sink prove the effectiveness of the criteria, showing large reduction in maximum operating temperature and harmful temperature gradients. The simulations further show that the device and microchannel heat sink can dissipate a comparatively high amount of power, with little thermal danger, when design considers the criteria developed herein.


Sign in / Sign up

Export Citation Format

Share Document