CAD-Based Calculation of Cutting Force Components in Gear Hobbing

Author(s):  
Tapoglou Nikolaos ◽  
Antoniadis Aristomenis

Gear hobbing is a common method of manufacturing high precision involute gears. The thorough knowledge of the developed cutting forces and the wear of the cutting tool are of great importance in order to produce helical and spur gears as they influence the cost of the manufacturing process and the quality of the produced gear. A novel simulation code called HOB3D was created in accordance with the above. This code can simulate the complex movements involved in gear hobbing with the best available accuracy, which is achieved by embedding the developed algorithm in a commercial computer aided design (CAD) environment. The simulation code calculates and exports the total cutting forces as well as the cutting forces in every cutting edge involved in the cutting process.

2015 ◽  
Vol 809-810 ◽  
pp. 890-895
Author(s):  
Ionuţ Ghionea ◽  
Adrian Ghionea ◽  
Saša Ćuković ◽  
Nicolae Ionescu

This paper presents an applicative methodology of parametric computer aided design using the CATIA v5 software to model and assembly a modular fixture device. The device is then used in the orientation and clamping a part of type casing cover which has a face machined by milling. Having a constructive solution of the fixture device, the next step is to simulate a milling process through a FEM analysis to identify the working conditions: milling tool diameter, number of teeth, cutting forces, required power of the machine tool etc. Some parameters were chosen according to various tools manufacturers catalogues and the cutting force components were determined experimentally in laboratory conditions. The analysis results show that in the FEM simulated milling process, in all the fixture device parts, some tensions cause displacements that have an influence over the casing cover surface roughness.


2020 ◽  
Vol 3 (1) ◽  
pp. 62-69 ◽  
Author(s):  
I. Odenbah

this article discusses some new modern technologies in the construction of highways. The paper analyzes the use of such innovations as: various modifiers added to bitumen; advanced technologies of engineering surveys and computer-aided design of highways; geosynthetic materials for reinforcing the roadbed and asphalt concrete pavement; PBB; bituminous polymer road belts; geotextile; foam-glass rubble; rubber crumb. The advantages of using innovations in road construction are highlighted. Obstacles to the use of certain technologies are noted, taking into account the Russian reality. The author concludes that the use of innovative materials becomes economically justified at the stage of construction and subsequent operation of the road surface. New technologies can not only improve the quality of roads, but also improve road safety. Innovations lead to progressive changes and ensure the dynamic development of the construction industry, primarily by reducing the cost and timing of construction, improving the quality of constructed facilities, and improving the comfort of living and operation. The paper discusses classical methods for the design works of the foundation and the GM made a review of modern structures and technologies on their device. In order to assess the possibility of using linear calculation for sheet piling fences, deep pit modeling was performed in the SCAD and PLAXIS software systems. The results of the work are the following conclusions: 1. the method of increasing the efficiency of technologies at the device walling of the pit is proposed; 2. a finite element model of soil and GM collaboration was created. To evaluate the effectiveness of the options, we used decision-making methods based on optimization criteria, taking into account the degree of risks involved in the work. It is established that the necessary factor is the geotechnical support of technological impacts, which allows monitoring of works on the degree of safety and impact on highways.


The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1401
Author(s):  
Doo-Bin Song ◽  
Man-So Han ◽  
Si-Chul Kim ◽  
Junyong Ahn ◽  
Yong-Woon Im ◽  
...  

This study investigated the fitting accuracy of titanium alloy fixed dental prostheses (FDP) after sequential CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) fabrication. A three-unit FDP model connecting mandibular second premolars and molars was prepared and scanned to fabricate titanium FDPs by CAD/CAM milling. A total of six FDPs were sequentially milled in one titanium alloy disk using a new set of burs every time (n = 4). The fitting accuracy of FDPs was mesiodistally evaluated by a silicone replica technique and the measurement was triplicated at four different locations: MO (marginal opening), MG (marginal gap), AG (axial gap), and OG (occlusal gap). Data were statistically analyzed using ANOVA and Tukey’s HSD test. The fitting accuracy of PMMA (polymethyl methacrylate) FDPs milled using the worn or new bur were evaluated by the same procedure (n = 6). The mean dimensions of titanium FDP for all measuring positions, except for AG, were significantly increased from the third milling. However, no difference was noted between the first FDP and the second FDP milled with the same set of burs. Severe edge chippings were observed in all milling burs. Detrimental effects of the worn burs on the fitting accuracy were demonstrated in the CAD/CAM-milled PMMA FDP. The results recommend proper changing frequency of cutting burs to achieve the quality of fit and predictable outcomes for dental CAD/CAM prostheses.


2021 ◽  
Vol 26 (5) ◽  
pp. 399-409
Author(s):  
M.A. Zapletina ◽  
◽  
S.V. Gavrilov ◽  
◽  

One of the main advantages of FPGA and CPLD is the high development speed; therefore, the importance of effective computer-aided design tools for modern microcircuits of these classes cannot be overestimated. Placement and routing are the most time-consuming stages of FPGA/CPLD design flow. The quality of results of these stages is crucial to the final perfor-mance of custom digital circuits implemented on FPGA/CPLD. The paper discusses an approach to accelerating the routing stage within the layout synthesis flow for FPGA/CPLD by introducing a few algorithmic improvements to a routing procedure. The basic routing algorithm under study is a modified Pathfinder for a mixed routing resource graph. Pathfinder is a well-known negotiation-based routing algorithm that works on the principle of iteratively eliminating congestions of chip routing resources. For experiments, the sets of test digital circuits ISCAS'85, ISCAS'89, LGSynth'89 and several custom industrial projects were used. The impact of the proposed algorithmic improvements was analyzed using four FPGA/CPLD architectures. It has been established that due to the improvements of the algorithm proposed in the paper, the average reduction in routing time was from 1.3 to 2.6 times, depending on the FPGA/CPLD architecture, with no significant negative effect on the timing characteristics of the designed circuits.


2021 ◽  
Vol 111 (2) ◽  
pp. 66-77
Author(s):  
M. Othmani ◽  
K. Zarbane ◽  
A. Chouaf

Purpose: The present work aims to investigate the effect of many infill patterns (rectilinear, line, grid, triangles, cubic, concentric, honeycomb, 3D honeycomb) and the infill density on the mechanical tensile strength of an Acrylonitrile Butadiene Styrene (ABS) test specimen manufactured numerically by FDM. Design/methodology/approach: Computer-Aided Design (CAD) software has been used to model the geometry and the mesostructure of the test specimens in a fully automatic manner from a G-code file by using a script. Then, a Numerical Design of Experiments (NDoE) has been carried out by using Taguchi method and the Analysis of Variance (ANOVA). The tensile behaviour of these numerical test specimens has been studied by the Finite Element Analysis (FEA). Findings: The FEA results showed that a maximal Ultimate Tensile Strength (UTS) was reached by using the ‘concentric’ infill pattern combined with an infill density of 30%. The results also show that the infill pattern and the infill density are significant factors. Research limitations/implications: The low infill densities of 20% and 30% that have already been used in many previous studies, we have also applied it in order to reduce the time of the simulations. Indeed, with high infill density, the simulations take a very excessive time. In an ongoing study, we predicted higher percentages. Practical implications: This study provided an important modelling tool for the design and manufacture of functional parts and helps the FDM practitioners and engineers to manufacture strong and lightweight FDM parts by choosing the optimal process parameters. Originality/value: This study elucidated the effect of various infill patterns on the tensile properties of the test specimens and applied for the first time a NDoE using numerical test specimens created by the mesostructured approach, which considerably minimized the cost of the experiments while obtaining an error of 6.8% between the numerical and the experimental values of the UTS.


2020 ◽  
pp. 030936462094829 ◽  
Author(s):  
Trevor Binedell ◽  
Eugene Meng ◽  
Karupppasamy Subburaj

Background: Upper limb, in particular forequarter amputations, require highly customised devices that are often expensive and underutilised. Objectives: The objective of this study was to design and develop a comfortable 3D-printed cosmetic forequarter prosthetic device, which was lightweight, cool to wear, had an elbow that could lock, matched the appearance of the contralateral arm and was completely free of metal for a specific user’s needs. Study Design: Device design. Technique: An iterative user-centred design approach was used for digitising, designing and developing a functional 3D-printed prosthetic arm for an acquired forequarter amputation, while optimising the fit and function after each prototype. Results: The cost of the final arm was 20% less expensive than a traditionally-made forequarter prostheses in Singapore. The Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST) 2.0 survey was administered, with results indicating that the 3D-printed arm was preferred due to its overall effectiveness, accurate size, ease of use and suspension. However, durability had a lower score, and the weight of the arm was 100 g heavier than the user’s current prosthesis. The technique described resulted in a precise fitting and shaped forequarter prosthesis for the user. Using the user’s feedback in the iterations of the design resulted in improved QUEST survey results indicating the device was effective, easy to use, perceived as lighter and more secure than the user’s traditionally-made device. Conclusion: A fully customised cosmetic forequarter prosthesis was designed and developed using digital scanning, computer-aided design modelling and 3D printing for a specific user. These technologies enable new avenues for highly complex prosthetic design innovations.


Author(s):  
J C Rico ◽  
S Mateos ◽  
E Cuesta ◽  
C M Suárez

This paper presents a program for the automatic design of special tools developed under a CAD/CAM (computer aided design/manufacture) system. In particular, the special tools made with standard components have been considered. Since the design of these types of tools was essentially related to the selection of their components, this paper deals with this aspect, insisting upon the selection of those components directly related to the removal of material: the toolholders or cartridges and the inserts. To select these components it is necessary to take into account not only geometrical or technological rules but also economical ones, owing to the high amount of possible components they can select. Consideration of economical aspects required the formulation of the cost equation associated with the use of these types of tools, characterized because their cutting edges coincide with different cutting velocities. Likewise, consideration of economical aspects allows the selection of the optimum cutting conditions and the cutting components to take place at the same time. Some of the geometrical and technological parameters related to the selection of cutting components are automatically identified by the system through an automatic identification of the workpiece profile.


Author(s):  
Tsz-Ho Kwok

Abstract The process planning of a manufacturing method is the key to ensure the quality of the fabricated part. In Additive Manufacturing (AM), slicing is a crucial step in process planning to convert a Computer-Aided Design (CAD) model to a machine-specific format. If the slicing results were incorrect, the manufacturing quality would have no way to be assured. Therefore, it is important to understand the performance of different slicing technologies for AM. Digital Light Processing (DLP) printing is an important AM process that has a good surface finish, high accuracy and fabrication speed, and is widely applied in many dental and engineering industries. However, while most other AM processes are toolpath-based, as a process that uses images as the fabrication tool, the DLP printing has its process planning understudied. Therefore, the main goal of this paper is to study, compare and benchmark the slicing technologies for DLP printing. Three slicing technologies are compared: contour, voxelization, and ray-tracing. They are tested with some common defects in slicing, and their usage in computational resources is also reported. The summary and suggestion are given at the end.


2014 ◽  
Vol 1016 ◽  
pp. 215-220 ◽  
Author(s):  
Nawel Glaa ◽  
Kamel Mehdi ◽  
Moez Ben Jaber

The drilling operation is considered by manufacturers as complex and difficult process (rapid wear of the cutting edge as well as problems of chip evacuation). Faced with these failures, manufacturers have shifted in recent years towards the drilling process assisted by forced vibrations. This method consist to add an axial oscillation with a low frequency to the classical feed movement of the drill so as to ensure good fragmentation and better chip evacuation. This paper presents a model for prediction of cutting forces during a drilling operation assisted by forced low-frequency vibration. The model allows understanding the interaction between the tool and the workpiece and identifying numerically the three-dimensional evolution of the cutting force components generated by the vibratory drilling operation. The effects of cutting parameters, tool parameters and those of forced vibrations on the cutting forces distributions will be discussed.


Sign in / Sign up

Export Citation Format

Share Document