Development of a Special Inertial Measurement Unit for UAV Applications

Author(s):  
Khaled S. Hatamleh ◽  
Ou Ma ◽  
Angel Flores-Abad ◽  
Pu Xie

Dynamics modeling is becoming more and more important in the development and control of unmanned aerial vehicles (UAV). An accurate model of a vehicle requires good knowledge of the dynamics properties and motion states, which are usually estimated with the help of integrated inertial measurement units (IMUs). This work develops a special six degrees of freedom IMU, which has the capability of measuring the angular accelerations. This paper introduces the design of the new IMU along with its sensor models and calibration procedures. The work introduces two experimental methods to verify the calibrated IMU readings. The IMU was designed to support an on-line methodology to estimate the parameters of UAV’s dynamics model that is currently being developed by the authors.

Author(s):  
Alireza Marzbanrad ◽  
Jalil Sharafi ◽  
Mohammad Eghtesad ◽  
Reza Kamali

This is report of design, construction and control of “Ariana-I”, an Underwater Remotely Operated Vehicle (ROV), built in Shiraz University Robotic Lab. This ROV is equipped with roll, pitch, heading, and depth sensors which provide sufficient feedback signals to give the system six degrees-of-freedom actuation. Although its center of gravity and center of buoyancy are positioned in such a way that Ariana-I ROV is self-stabilized, but the combinations of sensors and speed controlled drivers provide more stability of the system without the operator involvement. Video vision is provided for the system with Ethernet link to the operation unit. Control commands and sensor feedbacks are transferred on RS485 bus; video signal, water leakage alarm, and battery charging wires are provided on the same multi-core cable. While simple PI controllers would improve the pitch and roll stability of the system, various control schemes can be applied for heading to track different paths. The net weight of ROV out of water is about 130kg with frame dimensions of 130×100×65cm. Ariana-I ROV is designed such that it is possible to be equipped with different tools such as mechanical arms, thanks to microprocessor based control system provided with two directional high speed communication cables for on line vision and operation unit.


2014 ◽  
Vol 624 ◽  
pp. 289-292
Author(s):  
Ting Jin ◽  
Yun Qiu Gong ◽  
Chun Yu Wei

The six degrees of freedom platform in vehicle driving simiulator simulates vehicle motion based on the calculation results of the dynamics model, so good dynamics model is the basis and prerequisite of simulator’s good performance. This paper describes the process of applying the Vortex software to establish vehicle dynamics model and focuses on the problem of damping matching in the vehicle suspension system based on the ride comfort and stability.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
S. Sadr ◽  
S. Ali A. Moosavian ◽  
P. Zarafshan

Nowadays, aerial robots or Unmanned Aerial Vehicles (UAV) have many applications in civilian and military fields. For example, of these applications is aerial monitoring, picking loads and moving them by different grippers. In this research, a quadrotor with a cable-suspended load with eight degrees of freedom is considered. The purpose is to control the position and attitude of the quadrotor on a desired trajectory in order to move the considered load with constant length of cable. So, the purpose of this research is proposing and designing an antiswing control algorithm for the suspended load. To this end, control and stabilization of the quadrotor are necessary for designing the antiswing controller. Furthermore, this paper is divided into two parts. In the first part, dynamics model is developed using Newton-Euler formulation, and obtained equations are verified in comparison with Lagrange approach. Consequently, a nonlinear control strategy based on dynamic model is used in order to control the position and attitude of the quadrotor. The performance of this proposed controller is evaluated by nonlinear simulations and, finally, the results demonstrate the effectiveness of the control strategy for the quadrotor with suspended load in various maneuvers.


2020 ◽  
pp. 67-73
Author(s):  
N.D. YUsubov ◽  
G.M. Abbasova

The accuracy of two-tool machining on automatic lathes is analyzed. Full-factor models of distortions and scattering fields of the performed dimensions, taking into account the flexibility of the technological system on six degrees of freedom, i. e. angular displacements in the technological system, were used in the research. Possibilities of design and control of two-tool adjustment are considered. Keywords turning processing, cutting mode, two-tool setup, full-factor model, accuracy, angular displacement, control, calculation [email protected]


2021 ◽  
Vol 10 (9) ◽  
pp. 1804
Author(s):  
Jorge Posada-Ordax ◽  
Julia Cosin-Matamoros ◽  
Marta Elena Losa-Iglesias ◽  
Ricardo Becerro-de-Bengoa-Vallejo ◽  
Laura Esteban-Gonzalo ◽  
...  

In recent years, interest in finding alternatives for the evaluation of mobility has increased. Inertial measurement units (IMUs) stand out for their portability, size, and low price. The objective of this study was to examine the accuracy and repeatability of a commercially available IMU under controlled conditions in healthy subjects. A total of 36 subjects, including 17 males and 19 females were analyzed with a Wiva Science IMU in a corridor test while walking for 10 m and in a threadmill at 1.6 km/h, 2.4 km/h, 3.2 km/h, 4 km/h, and 4.8 km/h for one minute. We found no difference when we compared the variables at 4 km/h and 4.8 km/h. However, we found greater differences and errors at 1.6 km/h, 2.4 km/h and 3.2 km/h, and the latter one (1.6 km/h) generated more error. The main conclusion is that the Wiva Science IMU is reliable at high speeds but loses reliability at low speeds.


2013 ◽  
Vol 662 ◽  
pp. 717-720 ◽  
Author(s):  
Zhen Yu Zheng ◽  
Yan Bin Gao ◽  
Kun Peng He

As an inertial sensors assembly, the FOG inertial measurement unit (FIMU) must be calibrated before being used. The paper presents a one-time systematic IMU calibration method only using two-axis low precision turntable. First, the detail error model of inertial sensors using defined body frame is established. Then, only velocity taken as observation, system 33 state equation is established including the lever arm effects and nonlinear terms of scale factor error. The turntable experiments verify that the method can identify all the error coefficients of FIMU on low-precision two-axis turntable, after calibration the accuracy of navigation is improved.


1994 ◽  
Vol 98 (975) ◽  
pp. 192-193
Author(s):  
A.W. Bloy

The teaching of aircraft stability and control at university usually progresses to the complexity of six degrees of freedom with a large array of aerodynamic, gravitational and inertial terms. It is therefore essential to ensure that students have a good grasp of fundamental dynamic characteristics such as damping and natural frequency, and any demonstration in which students observe aircraft motion is particularly helpful. At Manchester University this is achieved by a windtunnel demonstration of aircraft dynamic stability and response in pitch to a sinusoidal gust generator.


2012 ◽  
Vol 224 ◽  
pp. 533-538 ◽  
Author(s):  
Jing Zhou ◽  
Steven Su ◽  
Ai Huang Guo ◽  
Wei Dong Chen

Inertial measurement units (IMU) are used as an affordable and effective remote measurement method for health monitoring in body sensor networks (BSNs) based on tracking people’s daily motions and activities. These inertial sensors are mostly micro-electro-mechanical systems with a combination of multi-axis combinations of precision gyroscopes, accelerometers, and magnetometers to sense multiple degrees of freedom (DoF).Unfortunately in the process of motion monitoring actual sensor outputs may contain some abnormalities, which might result in the misinterpretations of activities. In this paper, we use Principal component analysis (PCA) combined with Hotelling’s T2 and SPE statistic to detect abnormal data in the process of motion monitoring with IMU to ensure the reliability and accuracy in application. The simulated results prove this method is effective and feasible.


SIMULATION ◽  
1964 ◽  
Vol 2 (2) ◽  
pp. R-9-R-23
Author(s):  
Edward E. Markson ◽  
John L. Stricker

Space mission simulator programs may be divided into two broad categories: (1) training tools (quali tative devices often simulating a continuous mission), and (2) laboratory tools (quantitative devices treating the mission in phases, each phase being programmed separately to obtain optimum scaling). This paper describes the development of an analog program capable of continuously simulating an entire lunar mission in six degrees of freedom with high resolu tion throughout. The reported work logically traces the program development through the equations of motion, the guidance and control equations, and the analog mechanization. The translation equations are de veloped using a modified form of Encke's method; two reference origins are utilized at the two points of primary interest—the landing site and the target vehicle—such that the displacements are approach ing a minimum in the regions where the highest reso lution is required. The variables are rescaled as this region is approached to obtain maximum accuracy. Relays, stepping switches and diode gates are used for rescaling and to re-reference origins. A particular Euler angle sequence is selected based on matrix validity criteria applied to the mission. A previously reported guidance technique is shown to be appli cable to all phases of the mission. It is concluded that the method demonstrated in this paper leads to minimum computer loading for simulating a manned space mission without program discontinuities. Supporting data include an analog- computed trajectory representative of a long-dura tion mission, which is compared in detail with a digital solution.


2015 ◽  
Author(s):  
Jeonghwa Seo ◽  
Cristobal Santiago Bravo ◽  
Shin Hyung Rhee

A series of tests using a course-keeping model ship with an autopilot system were carried out in a towing tank for research on Safe-Return-to-Port (SRTP). The autopilot system controls the rudder angle and propeller revolution rate by a feedback system. The variation of the heading angle of the test model with different control parameters was investigated first, to ensure that the test model had sufficient course-keeping maneuverability in severe wave conditions. The wave conditions and propeller revolution rate were selected based on SRTP regulations. Tests were conducted in wave conditions corresponding to sea states 4 to 6. The six-degrees-of-freedom motion response of the test model was measured by a wireless inertial measurement unit and gyro sensors to achieve fully wireless model tests. The advance speed and motion response in various wave conditions were measured and analyzed to investigate the effects of flooding behavior in a damaged condition and of waves on the propulsion and maneuvering performance of the damaged ship model.


Sign in / Sign up

Export Citation Format

Share Document