Abnormalities Detection of IMU Based on PCA in Motion Monitoring

2012 ◽  
Vol 224 ◽  
pp. 533-538 ◽  
Author(s):  
Jing Zhou ◽  
Steven Su ◽  
Ai Huang Guo ◽  
Wei Dong Chen

Inertial measurement units (IMU) are used as an affordable and effective remote measurement method for health monitoring in body sensor networks (BSNs) based on tracking people’s daily motions and activities. These inertial sensors are mostly micro-electro-mechanical systems with a combination of multi-axis combinations of precision gyroscopes, accelerometers, and magnetometers to sense multiple degrees of freedom (DoF).Unfortunately in the process of motion monitoring actual sensor outputs may contain some abnormalities, which might result in the misinterpretations of activities. In this paper, we use Principal component analysis (PCA) combined with Hotelling’s T2 and SPE statistic to detect abnormal data in the process of motion monitoring with IMU to ensure the reliability and accuracy in application. The simulated results prove this method is effective and feasible.

2013 ◽  
Vol 662 ◽  
pp. 717-720 ◽  
Author(s):  
Zhen Yu Zheng ◽  
Yan Bin Gao ◽  
Kun Peng He

As an inertial sensors assembly, the FOG inertial measurement unit (FIMU) must be calibrated before being used. The paper presents a one-time systematic IMU calibration method only using two-axis low precision turntable. First, the detail error model of inertial sensors using defined body frame is established. Then, only velocity taken as observation, system 33 state equation is established including the lever arm effects and nonlinear terms of scale factor error. The turntable experiments verify that the method can identify all the error coefficients of FIMU on low-precision two-axis turntable, after calibration the accuracy of navigation is improved.


Author(s):  
Elisa Digo ◽  
Giuseppina Pierro ◽  
Stefano Pastorelli ◽  
Laura Gastaldi

The increasing number of postural disorders emphasizes the central role of the vertebral spine during gait. Indeed, clinicians need an accurate and non-invasive method to evaluate the effectiveness of a rehabilitation program on spinal kinematics. Accordingly, the aim of this work was the use of inertial sensors for the assessment of angles among vertebral segments during gait. The spine was partitioned into five segments and correspondingly five inertial measurement units were positioned. Articulations between two adjacent spine segments were modeled with spherical joints, and the tilt–twist method was adopted to evaluate flexion–extension, lateral bending and axial rotation. In total, 18 young healthy subjects (9 males and 9 females) walked barefoot in three different conditions. The spinal posture during gait was efficiently evaluated considering the patterns of planar angles of each spine segment. Some statistically significant differences highlighted the influence of gender, speed and imposed cadence. The proposed methodology proved the usability of inertial sensors for the assessment of spinal posture and it is expected to efficiently point out trunk compensatory pattern during gait in a clinical context.


2016 ◽  
Vol 2 (1) ◽  
pp. 715-718 ◽  
Author(s):  
David Graurock ◽  
Thomas Schauer ◽  
Thomas Seel

AbstractInertial sensor networks enable realtime gait analysis for a multitude of applications. The usability of inertial measurement units (IMUs), however, is limited by several restrictions, e.g. a fixed and known sensor placement. To enhance the usability of inertial sensor networks in every-day live, we propose a method that automatically determines which sensor is attached to which segment of the lower limbs. The presented method exhibits a low computational workload, and it uses only the raw IMU data of 3 s of walking. Analyzing data from over 500 trials with healthy subjects and Parkinson’s patients yields a correct-pairing success rate of 99.8% after 3 s and 100% after 5 s.


2017 ◽  
Vol 40 (9) ◽  
pp. 2843-2854 ◽  
Author(s):  
Renu Bhardwaj ◽  
Neelesh Kumar ◽  
Vipan Kumar

Micro-electro-mechanical systems (MEMS) technology-based accelerometers and gyroscopes are small size, mass produced, low cost inertial sensors, which are now being used in aerospace, underwater vehicles, automotive, robotics, mobiles, gaming consoles, prosthetic devices and many other applications. MEMS inertial sensors are available in many grades in market and selecting the appropriate grade sensor is very important. Owing to interaction of different types of energies, different noises are generated in MEMS devices; these noises cause significant change in output and the first section of this paper illustrates that. In application, where MEMS inertial sensors are used, the accuracy, repeatability and reproducibility of inertia measurement is probed primarily by complex testing, using extensive range of physical stimuli. Noises in inertial measurement are generally dealt by designing a unit measurement model. Noises are treated as additive error in linear unit model and are modelled using various techniques so that errors can be compensated to improve the accuracy. This paper reviews the theory, framework and methodology used in the error model of a MEMS inertial sensor and stochastic modelling of measurement. Experimental results from the most commonly used Allan variance techniques are discussed. Error modelling methodology, consisting of testing and calibration methods, designing thermal model, stochastic modelling and parameter estimation techniques, is illustrated. Figures and tables under each section summarize features, merits, limitation and future research scope. This paper should serve as a single reference for researchers and engineers working on application specific system design and instrumentation using MEMS inertial sensors. Conclusion from the study should help in selecting the appropriate grade of sensor as well as the best error modelling as per the trade-off existing between accuracy and development cost of error modelling.


2018 ◽  
Vol 25 (4) ◽  
pp. 59-64
Author(s):  
Krzysztof Bikonis ◽  
Jerzy Demkowicz

Abstract Small, lightweight, power-efficient and low-cost microelectromechanical system (MEMS) inertial sensors and microcontrollers available in the market today help reduce the instability of Multibeam Sonars. Current MEMS inertial measurement units (IMUs) come in many shapes, sizes, and costs - depending on the application and performance required. Although MEMS inertial sensors offer affordable and appropriately scaled units, they are not currently capable of meeting all requirements for accurate and precise attitudes, due to their inherent measurement noise. The article presents the comparison of different MEMS technologies and their parameters regarding to the main application, namely Multibeam Echo Sounders (MBES). The quality of MEMS parameters is crucial for further MBES record-processing. The article presents the results of undertaken researches in that area, and these results are relatively positive for low-cost MEMS. The paper undertakes some vital aspect of using MEMS in the attitude and heading reference system (AHRS) context. The article presents a few aspects of MEMS gyro errors and their estimation process in the context of INS processing flow, as well as points out the main difficulties behind the INS when using a few top MEMS technologies.


2015 ◽  
Vol 12 (03) ◽  
pp. 1550025 ◽  
Author(s):  
Mehdi Benallegue ◽  
Florent Lamiraux

Most robots are today controlled as being entirely rigid. But often, as for HRP-2 robot, there are flexible parts, intended for example to absorb impacts. The deformation of this flexibility modifies the orientation of the robot and endangers balance. Nevertheless, robots have usually inertial sensors inertial measurement units (IMUs) to reconstruct their orientation based on gravity and inertial effects. Moreover, humanoids have usually to ensure a firm contact with the ground, which provides reliable information on surrounding environment. We show in this study how important it is to take into account these information to improve IMU-based position/orientation reconstruction. We use an extended Kalman filter to rebuild the deformation, making the fusion between IMU and contact information, and without making any assumption on the dynamics of the flexibility. We show how, with this simple setting, we are able to compensate for perturbations and to stabilize the end-effector's position/orientation in the world reference frame. We show also that this estimation is reliable enough to enable a closed-loop stabilization of the flexibility and control of the center of mass (CoM) position with the simplest possible model.


2011 ◽  
Vol 106 (6) ◽  
pp. 2849-2864 ◽  
Author(s):  
Shinichi Furuya ◽  
Martha Flanders ◽  
John F. Soechting

Dexterous use of the hand represents a sophisticated sensorimotor function. In behaviors such as playing the piano, it can involve strong temporal and spatial constraints. The purpose of this study was to determine fundamental patterns of covariation of motion across joints and digits of the human hand. Joint motion was recorded while 5 expert pianists played 30 excerpts from musical pieces, which featured ∼50 different tone sequences and fingering. Principal component analysis and cluster analysis using an expectation-maximization algorithm revealed that joint velocities could be categorized into several patterns, which help to simplify the description of the movements of the multiple degrees of freedom of the hand. For the thumb keystroke, two distinct patterns of joint movement covariation emerged and they depended on the spatiotemporal patterns of the task. For example, the thumb-under maneuver was clearly separated into two clusters based on the direction of hand translation along the keyboard. While the pattern of the thumb joint velocities differed between these clusters, the motions at the metacarpo-phalangeal and proximal-phalangeal joints of the four fingers were more consistent. For a keystroke executed with one of the fingers, there were three distinct patterns of joint rotations, across which motion at the striking finger was fairly consistent, but motion of the other fingers was more variable. Furthermore, the amount of movement spillover of the striking finger to the adjacent fingers was small irrespective of the finger used for the keystroke. These findings describe an unparalleled amount of independent motion of the fingers.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2095
Author(s):  
Myeounggon Lee ◽  
Changhong Youm ◽  
Byungjoo Noh ◽  
Hwayoung Park

This study investigated the gait characteristics of healthy young adults using shoe-type inertial measurement units (IMU) during treadmill walking. A total of 1478 participants were tested. Principal component analyses (PCA) were conducted to determine which principal components (PCs) best defined the characteristics of healthy young adults. A non-hierarchical cluster analysis was conducted to evaluate the essential gait ability, according to the results of the PC1 score. One-way repeated analysis of variance with the Bonferroni correction was used to compare gait performances in the cluster groups. PCA outcomes indicated 76.9% variance for PC1–PC6, where PC1 (gait variability (GV): 18.5%), PC2 (pace: 17.8%), PC3 (rhythm and phase: 13.9%), and PC4 (bilateral coordination: 11.2%) were the gait-related factors. All of the pace, rhythm, GV, and variables for bilateral coordination classified the gait ability in the cluster groups. We suggest that the treadmill walking task may be reliable to evaluate the gait performances, which may provide insight into understanding the decline of gait ability. The presented results are considered meaningful for understanding the gait patterns of healthy adults and may prove useful as reference outcomes for future gait analyses.


Sign in / Sign up

Export Citation Format

Share Document