Characterization of Thigh and Shank Segment Angular Velocity During Jump Landing Tasks Commonly Used to Evaluate Risk for ACL Injury

2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Ariel V. Dowling ◽  
Julien Favre ◽  
Thomas P. Andriacchi

The dynamic movements associated with anterior cruciate ligament (ACL) injury during jump landing suggest that limb segment angular velocity can provide important information for understanding the conditions that lead to an injury. Angular velocity measures could provide a quick and simple method of assessing injury risk without the constraints of a laboratory. The objective of this study was to assess the inter-subject variations and the sensitivity of the thigh and shank segment angular velocity in order to determine if these measures could be used to characterize jump landing mechanisms. Additionally, this study tested the correlation between angular velocity and the knee abduction moment. Thirty-six healthy participants (18 male) performed drop jumps with bilateral and unilateral landing. Thigh and shank angular velocities were measured by a wearable inertial-based system, and external knee moments were measured using a marker-based system. Discrete parameters were extracted from the data and compared between systems. For both jumping tasks, the angular velocity curves were well defined movement patterns with high inter-subject similarity in the sagittal plane and moderate to good similarity in the coronal and transverse planes. The angular velocity parameters were also able to detect differences between the two jumping tasks that were consistent across subjects. Furthermore, the coronal angular velocities were significantly correlated with the knee abduction moment (R of 0.28–0.51), which is a strong indicator of ACL injury risk. This study suggested that the thigh and shank angular velocities, which describe the angular dynamics of the movement, should be considered in future studies about ACL injury mechanisms.

2021 ◽  
pp. 1-8
Author(s):  
Dhruv Gupta ◽  
Jeffrey A. Reinbolt ◽  
Cyril J. Donnelly

Knee abduction/adduction moment and knee internal rotation moment are known surrogate measures of anterior cruciate ligament (ACL) load during tasks like sidestepping and single-leg landing. Previous experimental literature has shown that a variety of kinematic strategies are associated or correlated with ACL injury risk; however, the optimal kinematic strategies needed to reduce peak knee moments and ACL injury are not well understood. To understand the complex, multifaceted kinematic factors underpinning ACL injury risk and to optimize kinematics to prevent the ACL injury, a musculoskeletal modeling and simulation experimental design was used. A 14-segment, 37-degree-of-freedom, dynamically consistent skeletal model driven by force/torque actuators was used to simulate whole-body single-leg jump landing kinematics. Using the residual reduction algorithm in OpenSim, whole-body kinematics were optimized to reduce the peak knee abduction/adduction and internal/external rotation moments simultaneously. This optimization was repeated across 30 single-leg jump landing trials from 10 participants. The general optimal kinematic strategy was to bring the knee to a more neutral alignment in the transverse plane and frontal plane (featured by reduced hip adduction angle and increased knee adduction angle). This optimized whole-body kinematic strategy significantly reduced the peak knee abduction/adduction and internal rotation moments, transferring most of the knee load to the hip.


2009 ◽  
Vol 44 (1) ◽  
pp. 101-109 ◽  
Author(s):  
Gregory D. Myer ◽  
Kevin R. Ford ◽  
Jon G. Divine ◽  
Eric J. Wall ◽  
Leamor Kahanov ◽  
...  

Abstract Objective: To present a unique case of a young pubertal female athlete who was prospectively monitored for previously identified anterior cruciate ligament (ACL) injury risk factors for 3 years before sustaining an ACL injury. Background: In prospective studies, previous investigators have examined cross-sectional measures of anatomic, hormonal, and biomechanical risk factors for ACL injury in young female athletes. In this report, we offer a longitudinal example of measured risk factors as the participant matured. Differential Diagnosis: Partial or complete tear of the ACL. Measurements: The participant was identified from a cohort monitored from 2002 until 2007. No injury prevention training or intervention was included during this time in the study cohort. Findings: The injury occurred in the year after the third assessment during the athlete's club basketball season. Knee examination, magnetic resonance imaging findings, and arthroscopic evaluation confirmed a complete ACL rupture. The athlete was early pubertal in year 1 of the study and pubertal during the next 2 years; menarche occurred at age 12 years. At the time of injury, she was 14.25 years old and postpubertal, with closing femoral and tibial physes. For each of the 3 years before injury, she demonstrated incremental increases in height, body mass index, and anterior knee laxity. She also displayed decreased hip abduction and knee flexor strength, concomitant with increased knee abduction loads, after each year of growth. Conclusions: During puberty, the participant increased body mass and height of the center of mass without matching increases in hip and knee strength. The lack of strength and neuromuscular adaptation to match the increased demands of her pubertal stature may underlie the increased knee abduction loads measured at each annual visit and may have predisposed her to increased risk of ACL injury.


2021 ◽  
pp. 194173812110379
Author(s):  
Steven L. Dischiavi ◽  
Alexis A Wright ◽  
Rachel A. Heller ◽  
Claire E. Love ◽  
Adam J. Salzman ◽  
...  

Context: Anterior cruciate ligament (ACL) injury risk reduction programs have become increasingly popular. As ACL injuries continue to reflect high incidence rates, the continued optimization of current risk reduction programs, and the exercises contained within them, is warranted. The exercises must evolve to align with new etiology data, but there is concern that the exercises do not fully reflect the complexity of ACL injury mechanisms. It was outside the scope of this review to address each possible inciting event, rather the effort was directed at the elements more closely associated with the end point of movement during the injury mechanism. Objective: To examine if exercises designed to reduce the risk of ACL injury reflect key injury mechanisms: multiplanar movement, single limb stance, trunk and hip dissociative control, and a flight phase. Data Sources: A systematic search was performed using PubMed, Medline, EBSCO (CINAHL), SPORTSDiscus, and PEDro databases. Study Selection: Eligibility criteria were as follows: (1) randomized controlled trials or prospective cohort studies, (2) male and/or female participants of any age, (3) exercises were targeted interventions to prevent ACL/knee injuries, and (4) individual exercises were listed and adequately detailed and excluded if program was unable to be replicated clinically. Study Design: Scoping review. Level of Evidence: Level 4. Data Extraction: A total of 35 studies were included, and 1019 exercises were extracted for analysis. Results: The average Consensus on Exercise Reporting Template score was 11 (range, 0-14). The majority of exercises involved bilateral weightbearing (n = 418 of 1019; 41.0%), followed by single limb (n = 345 of 1019; 33.9%) and nonweightbearing (n = 256 of 1019; 25.1%). Only 20% of exercises incorporated more than 1 plane of movement, and the majority of exercises had sagittal plane dominance. Although 50% of exercises incorporated a flight phase, only half of these also involved single-leg weightbearing. Just 16% of exercises incorporated trunk and hip dissociation, and these were rarely combined with other key exercise elements. Only 13% of exercises challenged more than 2 key elements, and only 1% incorporated all 4 elements (multiplanar movements, single limb stance, trunk and hip dissociation, flight phase) simultaneously. Conclusion: Many risk reduction exercises do not reflect the task-specific elements identified within ACL injury mechanisms. Addressing the underrepresentation of key elements (eg, trunk and hip dissociation, multiplanar movements) may optimize risk reduction in future trials.


2015 ◽  
Vol 31 (4) ◽  
pp. 269-274 ◽  
Author(s):  
Kam-Ming Mok ◽  
Eirik Klami Kristianslund ◽  
Tron Krosshaug

Knee valgus angles measured in sidestep cutting and vertical drop jumps are key variables in research on anterior cruciate ligament (ACL) injury causation. These variables are also used to quantify knee neuromuscular control and ACL injury risk. The aims of the current study were to (1) quantify the differences in the calculated knee valgus angles between 6 different thigh marker clusters, (2) investigate the trial ranking based on their knee valgus angles, and (3) investigate the influence of marker clusters on the cross-talk effect. Elite female handball and football players (n = 41) performed sidestep cutting and vertical drop jumping motions. We found systematic differences up to almost 15° of peak valgus between the marker sets in the drop jump test. The Spearman’s rank correlation coefficient varied from .505 to .974 among the 6 marker sets. In addition, the cross-talk effect varied considerably between the marker clusters. The results of the current study indicate that the choice of thigh marker cluster can have a substantial impact on the magnitude of knee valgus angle, as well as the trial ranking. A standardized thigh marker cluster, including nonanatomical landmark, is needed to minimize the variation of the measurement.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Muhammad Hamdan ◽  
Raja Mohammed Firhad Raja Azidin

This case study aims to discuss a proposal for identifying anterior cruciate ligament injury (ACL) risk by observing the variability of side cutting kinematics with respect to the development of fatigue. One participant (n=1) sustained an ACL injury while performing a side-cutting task during the latter stages of a soccer match a few months after a recorded laboratory session. Data from his laboratory session was then compared to matched samples of seventeen healthy, uninjured participants (n=17). The injured participant was found to have performed his side-cutting task with a lower deviation than mean variability right before the later stages of the second half of simulated soccer match-play. Over time, the participant performed side-cutting tasks with increased variability in sagittal plane kinematics, suggesting that compensatory actions may have been implemented to facilitate the task execution. This elevated variability may be indicative of an increased risk of ACL injury. The further prospective investigation is warranted to gain a deeper understanding of how variabilities may play a role in task execution performance with respect to injury mechanisms.


2021 ◽  
Vol 49 (3) ◽  
pp. 609-619 ◽  
Author(s):  
Enda King ◽  
Chris Richter ◽  
Katherine A.J. Daniels ◽  
Andy Franklyn-Miller ◽  
Eanna Falvey ◽  
...  

Background: Athletes are twice as likely to rupture the anterior cruciate ligament (ACL) on their healthy contralateral knee than the reconstructed graft after ACL reconstruction (ACLR). Although physical testing is commonly used after ACLR to assess injury risk to the operated knee, strength, jump, and change-of-direction performance and biomechanical measures have not been examined in those who go on to experience a contralateral ACL injury, to identify factors that may be associated with injury risk. Purpose: To prospectively examine differences in biomechanical and clinical performance measures in male athletes 9 months after ACLR between those who ruptured their previously uninjured contralateral ACL and those who did not at 2-year follow-up and to examine the ability of these differences to predict contralateral ACL injury. Study Design: Case-control study; Level of evidence, 3. Methods: A cohort of male athletes returning to level 1 sports after ACLR (N = 1045) underwent isokinetic strength testing and 3-dimensional biomechanical analysis of jump and change-of-direction tests 9 months after surgery. Participants were followed up at 2 years regarding return to play or at second ACL injury. Between-group differences were analyzed in patient-reported outcomes, performance measures, and 3-dimensional biomechanics for the contralateral limb and asymmetry. Logistic regression was applied to determine the ability of identified differences to predict contralateral ACL injury. Results: Of the cohort, 993 had follow-up at 2 years (95%), with 67 experiencing a contralateral ACL injury and 38 an ipsilateral injury. Male athletes who had a contralateral ACL injury had lower quadriceps strength and biomechanical differences on the contralateral limb during double- and single-leg drop jump tests as compared with those who did not experience an injury. Differences were related primarily to deficits in sagittal plane mechanics and plyometric ability on the contralateral side. These variables could explain group membership with fair to good ability (area under the curve, 0.74-0.80). Patient-reported outcomes, limb symmetry of clinical performance measures, and biomechanical measures in change-of-direction tasks did not differentiate those at risk for contralateral injury. Conclusion: This study highlights the importance of sagittal plane control during drop jump tasks and the limited utility of limb symmetry in performance and biomechanical measures when assessing future contralateral ACL injury risk in male athletes. Targeting the identified differences in quadriceps strength and plyometric ability during late-stage rehabilitation and testing may reduce ACL injury risk in healthy limbs in male athletes playing level 1 sports. Clinical Relevance: This study highlights the importance of assessing the contralateral limb after ACLR and identifies biomechanical differences, particularly in the sagittal plane in drop jump tasks, that may be associated with injury to this limb. These factors could be targeted during assessment and rehabilitation with additional quadriceps strengthening and plyometric exercises after ACLR to potentially reduce the high risk of injury to the previously healthy knee. Registration: NCT02771548 ( ClinicalTrials.gov identifier).


2018 ◽  
Vol 1 (84) ◽  
Author(s):  
Vilma Jurevičienė ◽  
Albertas Skurvydas ◽  
Juozas Belickas ◽  
Giedra Bušmanienė ◽  
Dovilė Kielė ◽  
...  

Research  background  and  hypothesis.  Proprioception  is  important  in  the  prevention  of  injuries  as  reduced proprioception  is  one  of  the  factors  contributing  to  injury  in  the  knee  joint,  particularly  the  ACL.  Therefore, proprioception appears not only important for the prevention of ACL injuries, but also for regaining full function after ACL reconstruction.Research aim. The aim of this study was to understand how proprioception is recovered four and five months after anterior cruciate ligament (ACL) reconstruction.Research methods. The study included 15 male subjects (age – 33.7 ± 2.49 years) who had undergone unilateral ACL reconstruction with a semitendinosus/gracilis (STG) graft in Kaunas Clinical Hospital. For proprioceptive assessment, joint position sense (JPS) was measured on both legs using an isokinetic dynamometer (Biodex), at knee flexion of 60° and 70°, and at different knee angular velocities of 2°/s and 10°/s. The patients were assessed preoperatively and after 4 and 5 months, postoperatively.Research results. Our study has shown that the JPS’s (joint position sense) error scores  to a controlled active movement is significantly higher in injured ACL-deficient knee than in the contralateral knee (normal knee) before surgery and after four and five months of rehabilitation.  After 4 and 5 months of rehabilitation we found significantly lower values in injured knees compared to the preoperative data. Our study has shown that in injured knee active angle reproduction errors after 4 and 5 months of rehabilitation were higher compared with the ones of the uninjured knee. Proprioceptive ability on the both legs was  independent of all differences angles for target and starting position for movement. The knee joint position sense on both legs depends upon the rate of two different angular velocities and the mean active angle reproduction errors at the test of angular velocity slow speed was the highest compared with the fast angular velocity. Discussion and conclusions. In conclusion, our study shows that there was improvement in mean JPS 4 and 5 months after ACL reconstruction, but it did not return to normal indices.Keywords: knee joint, joint position sense, angular velocity, starting position for movement.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 997
Author(s):  
Alessandro de Sire ◽  
Nicola Marotta ◽  
Andrea Demeco ◽  
Lucrezia Moggio ◽  
Pasquale Paola ◽  
...  

Anterior cruciate ligament (ACL) injury incidence is often underestimated in tennis players, who are considered as subjects conventionally less prone to knee injuries. However, evaluation of the preactivation of knee stabilizer muscles by surface electromyography (sEMG) showed to be a predictive value in the assessment of the risk of ACL injury. Therefore, this proof-of-concept study aimed at evaluating the role of visual input on the thigh muscle preactivation through sEMG to reduce ACL injury risk in tennis players. We recruited male, adult, semiprofessional tennis players from July to August 2020. They were asked to drop with the dominant lower limb from a step, to evaluate—based on dynamic valgus stress—the preactivation time of the rectus femoris (RF), vastus medialis, biceps femoris, and medial hamstrings (MH), through sEMG. To highlight the influence of visual inputs, the athletes performed the test blindfolded and not blindfolded on both clay and grass surfaces. We included 20 semiprofessional male players, with a mean age 20.3 ± 4.8 years; results showed significant early muscle activation when the subject lacked visual input, but also when faced with a less-safe surface such as clay over grass. Considering the posteromedial–anterolateral relationship (MH/RF ratio), tennis players showed a significant higher MH/RF ratio if blindfolded (22.0 vs. 17.0% not blindfolded; p < 0.01) and percentage of falling on clay (17.0% vs. 14.0% in grass; p < 0.01). This proof-of-principle study suggests that in case of absence of visual input or falling on a surface considered unsafe (clay), neuro-activation would tend to protect the anterior stress of the knee. Thus, the sEMG might play a crucial role in planning adequate athletic preparation for semiprofessional male athletes in terms of reduction of ACL injury risk.


2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0015
Author(s):  
Cody R. Criss ◽  
Dustin R. Grooms ◽  
Jed A. Diekfuss ◽  
Manish Anand ◽  
Alexis B. Slutsky-Ganesh ◽  
...  

Background: Anterior cruciate ligament (ACL) injuries predominantly occur via non-contact mechanisms, secondary to motor coordination errors resulting in aberrant frontal plane knee loads that exceed the thresholds of ligament integrity. However, central nervous system processing underlying high injury-risk motor coordination errors remain unknown, limiting the optimization of current injury reduction strategies. Purpose: To evaluate the relationships between brain activity during motor tasks with injury-risk loading during a drop vertical jump. Methods: Thirty female high school soccer players (16.10 ± 0.87 years, 165.10 ± 4.64 cm, 63.43 ± 8.80 kg) were evaluated with 3D biomechanics during a standardized drop vertical jump from a 30 cm box and peak knee abduction moment was extracted as the injury-risk variable of interest. A neuroimaging session to capture neural activity (via blood-oxygen-level-dependent signal) was then completed which consisted of 4 blocks of 30 seconds of repeated bilateral leg press action paced to a metronome beat of 1.2 Hz with 30 seconds rest between blocks. Knee abduction moment was evaluated relative to neural activity to identify potential neural contributors to injury-risk. Results: There was a direct relationship between increased landing knee abduction moment and increased neural activation within regions corresponding to the lingual gyrus, intracalcarine cortex, posterior cingulate cortex, and precuneus (r2= 0.68, p corrected < .05, z max > 3.1; Table 1 & Figure 1). Conclusion: Elevated activity in regions that integrate sensory, spatial, and attentional information may contribute to elevated frontal plane knee loads during landing. Interestingly, a similar activation pattern related to high-risk landing mechanics has been found in those following injury, indicating that predisposing factors to injury may be accentuated by injury or that modern rehabilitation does not recover prospective neural control deficits. These data uncover a potentially novel brain marker that could guide the discovery of neural-therapeutic targets that reduce injury risk beyond current prevention methods. [Table: see text][Figure: see text]


Author(s):  
Joao Paulo Dias ◽  
Ariful Bhuiyan ◽  
Nabila Shamim

Abstract An estimated number of 300,000 new anterior cruciate ligament (ACL) injuries occur each year in the United States. Although several magnetic resonance (MR) imaging-based ACL diagnostics methods have already been proposed in the literature, most of them are based on machine learning or deep learning strategies, which are computationally expensive. In this paper, we propose a diagnostics framework for the risk of injury in the anterior cruciate ligament (ACL) based on the application of the inner-distance shape context (IDSC) to describe the curvature of the intercondylar notch from MR images. First, the contours of the intercondylar notch curvature from 91 MR images of the distal end of the femur (70 healthy and 21 with confirmed ACL injury) were extracted manually using standard image processing tools. Next, the IDSC was applied to calculate the similarity factor between the extracted contours and reference standard curvatures. Finally, probability density functions of the similarity factor data were obtained through parametric statistical inference, and the accuracy of the ACL injury risk diagnostics framework was assessed using receiver operating characteristic analysis (ROC). The overall results for the area under the curve (AUC) showed that method reached a maximum accuracy of about 66%. Furthermore, the sensitivity and specificity results showed that an optimum discrimination threshold value for the similarity factor can be pursued that minimizes the incidence of false positives and false positives simultaneously.


Sign in / Sign up

Export Citation Format

Share Document