Improving Single-Molecule Experiments With Feedback Control of Optical Traps

2012 ◽  
Vol 135 (2) ◽  
Author(s):  
D. G. Cole

This article explores various types of feedback control—position feedback, which was shown to be equivalent to force feedback, rate feedback, and integral feedback—for the purpose of improving instrument performance for single-molecule experiments. The ability of each of each types of feedback to lower the measurement signal-to-noise ratio (SNR) is evaluated and compared to the open-loop case. While position feedback does not result in any improvement in the SNR, the cases of rate feedback and integral feedback both resulted in improvements in the measurement's SNR. Rate feedback is shown to effectively “cool” the beads held in the optical trap, thereby limiting the effect that Brownian disturbances have on the beads’ motion. Integral feedback is shown to improve the SNR of the measured signal of interest and is robust and easy to implement. It is also shown that integral feedback acts as an exogenous force estimator. Ultimately, feedback does not provide better resolution as measured by SNR than an open-loop filtering approach can but does provide other advantages, including the ability to control other variables and to make a more robust instrument that can be easily adapted to changes in experimental conditions or the environment.

Author(s):  
Daniel G. Cole

This article explores two types of feedback used to control optical traps: position feedback, which was shown to be equivalent to force feedback, and integral feedback. The ability of each of these types of feedback to lower the measurement SNR in single molecule experiments is evaluated and compared to the open-loop case. While position feedback did not result in any improvement in the SNR, the case of integral feedback results in an improvement. Integral feedback is shown to improve the SNR of the measured signal of interest, and is relatively robust and easy to implement. It is also shown that integral feedback acts as an exogenous force estimator.


1990 ◽  
Vol 2 (2) ◽  
pp. 91-96
Author(s):  
Yasuo Yoshida ◽  
◽  
Masato Tanaka

The reduction gear's friction strongly affects the dynamic characteristics of a one-link flexible robot arm. Experiments of open loop response by motor torque were performed in two cases of large and small values of the reduction gear's friction, and compared with simulation. The reduction gear's friction has both viscous and Coulomb aspects and can be approximately treated as an equivalent viscous friction. However, tip position control was very difficult in the case of large friction with an equivalent viscous friction. Experiments indicated that tip position feedback control was possible by using a dither signal and linearizing the non-linear friction.


2009 ◽  
Vol 102 (5) ◽  
pp. 2800-2815 ◽  
Author(s):  
Quang-Cuong Pham ◽  
Halim Hicheur

We investigated the nature of the control mechanisms at work during goal-oriented locomotion. In particular, we tested the effects of vision, locomotor speed, and the presence of via points on the geometric and kinematic properties of locomotor trajectories. We first observed that the average trajectories recorded in visual and nonvisual locomotion were highly comparable, suggesting the existence of vision-independent processes underlying the formation of locomotor trajectories. Then by analyzing and comparing the variability around the average trajectories across different experimental conditions, we were able to demonstrate the existence of on-line feedback control in both visual and nonvisual locomotion and to clarify the relations between visual and nonvisual control strategies. Based on these insights, we designed a model in which maximum-smoothness and optimal feedback control principles account, respectively, for the open-loop and feedback processes. Taken together, the experimental and modeling findings provide a novel understanding of the nature of the motor, sensory, and “navigational” processes underlying goal-oriented locomotion.


2013 ◽  
Vol 133 (8) ◽  
pp. 795-803
Author(s):  
Kazuki Nagase ◽  
Shutaro Yorozu ◽  
Takahiro Kosugi ◽  
Yuki Yokokura ◽  
Seiichiro Katsura

1993 ◽  
Vol 1 (5) ◽  
pp. 779-790 ◽  
Author(s):  
C. Fenot ◽  
F. Rolland ◽  
G. Vigneron ◽  
I.D. Landau

Author(s):  
Bao Tri Diep ◽  
Quoc Hung Nguyen ◽  
Thanh Danh Le

The purpose of this paper is to design a control algorithm for a 2-DoF rotary joystick model. Firstly, the structure of the joystick, which composes of two magneto-rheological fluid actuators (shorten MRFA) with optimal configuration coupled perpendicularly by the gimbal mechanism to generate the friction torque for each independent rotary movement, is introduced. The control strategy of the designed joystick is then suggested. Really, because of two independent rotary movements, it is necessary to design two corresponding controllers. Due to hysteresis and nonlinear dynamic characteristics of the MRFA, controllers based an accurate dynamic model are difficult to realize. Hence, to release this issue, the proposed controller (named self-turning fuzzy controllers-STFC) will be built through the fuzzy logic algorithm in which the parameters of controllers are learned and trained online by Levenberg-Marquardt training algorithm. Finally, an experimental apparatus will be constructed to assess the effectiveness of the force feedback controls. Herein, three experimental cases are performed to compare the control performance of open-loop and close-loop control method, where the former is done through relationship between the force at the knob and the current supplied to coil while the latter is realized based on the proposed controller and PID controller. The experimental results provide strongly the ability of the proposed controller, meaning that the STFC is robust and tracks well the desirable force with high accuracy compared with both the PID controller and the open-loop control method.


Sign in / Sign up

Export Citation Format

Share Document