Cylindrical Shells: Energy, Equilibrium, Addenda, and Erratum

1955 ◽  
Vol 22 (1) ◽  
pp. 111-116
Author(s):  
E. H. Kennard

Abstract The strain energy in a homogeneous cylindrical shell of uniform thickness is calculated from equations obtained by Epstein’s method. The indeterminateness of the equations of equilibrium is further discussed and simplified forms of these equations and of the expressions for the stress resultants are given. Addenda and an erratum to a prior paper are included.

2005 ◽  
Vol 73 (4) ◽  
pp. 709-711
Author(s):  
James G. Simmonds

The techniques used by Koiter in 1968 to derive a simplified set of linear equilibrium equations for an elastically isotropic circular cylindrical shell in terms of displacements and the associated pointwise error estimate engendered in Love’s uncoupled strain-energy density are here extended to derive analogous simplified equilibrium equations and an error estimate for elastically isotropic cylindrical shells of arbitrary closed cross section.


2011 ◽  
Vol 243-249 ◽  
pp. 5981-5984
Author(s):  
Yao Peng Wu

Bi-stable structure can be stable in both its extended and coiled forms. As a novel deployable structure, it shows a broad application prospect in the field of aeronautics and civil engineering, etc. Considered two cylindrical shells having the same flattening configurations, they can be closely bound together by applying external forces. And the corresponding double-layered cylindrical shell model is proposed. Expressions for the bending and stretching strain energies of the cylindrical shells are presented. Calculations show that total strain energy has two local minimal values, which reveals that the double-layered cylindrical shell has its bi-stability. The corresponding rolled-up radii are thus determined.


Author(s):  
Afshin Anssari-Benam ◽  
Andrea Bucchi ◽  
Giuseppe Saccomandi

AbstractThe application of a newly proposed generalised neo-Hookean strain energy function to the inflation of incompressible rubber-like spherical and cylindrical shells is demonstrated in this paper. The pressure ($P$ P ) – inflation ($\lambda $ λ or $v$ v ) relationships are derived and presented for four shells: thin- and thick-walled spherical balloons, and thin- and thick-walled cylindrical tubes. Characteristics of the inflation curves predicted by the model for the four considered shells are analysed and the critical values of the model parameters for exhibiting the limit-point instability are established. The application of the model to extant experimental datasets procured from studies across 19th to 21st century will be demonstrated, showing favourable agreement between the model and the experimental data. The capability of the model to capture the two characteristic instability phenomena in the inflation of rubber-like materials, namely the limit-point and inflation-jump instabilities, will be made evident from both the theoretical analysis and curve-fitting approaches presented in this study. A comparison with the predictions of the Gent model for the considered data is also demonstrated and is shown that our presented model provides improved fits. Given the simplicity of the model, its ability to fit a wide range of experimental data and capture both limit-point and inflation-jump instabilities, we propose the application of our model to the inflation of rubber-like materials.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Xiongtao Cao ◽  
Chao Ma ◽  
Hongxing Hua

A general method for predicting acoustic radiation from multiple periodic structures is presented and a numerical solution is proposed to find the radial displacement of thick laminated cylindrical shells with sparse cross stiffeners in the wavenumber domain. Although this method aims at the sound radiation from a single stiffened cylindrical shell, it can be easily adapted to analyze the vibrational and sound characteristics of two concentric cylindrical shells or two parallel plates with complicated periodic stiffeners, such as submarine and ship hulls. The sparse cross stiffeners are composed of two sets of parallel rings and one set of longitudinal stringers. The acoustic power of large cylindrical shells above the ring frequency is derived in the wavenumber domain on the basis of the fact that sound power is focused on the acoustic ellipse. It transpires that a great many band gaps of wave propagation in the helical wave spectra of the radial displacement for stiffened cylindrical shells are generated by the rings and stringers. The acoustic power and input power of stiffened antisymmetric laminated cylindrical shells are computed and compared. The acoustic energy conversion efficiency of the cylindrical shells is less than 10%. The axial and circumferential point forces can also produce distinct acoustic power. The radial displacement patterns of the antisymmetric cylindrical shell with fluid loadings are illustrated in the space domain. This study would help to better understand the main mechanism of acoustic radiation from stiffened laminated composite shells, which has not been adequately addressed in its companion paper (Cao et al., 2012, “Acoustic Radiation From Shear Deformable Stiffened Laminated Cylindrical Shells,” J. Sound Vib., 331(3), pp. 651-670).


1953 ◽  
Vol 20 (4) ◽  
pp. 469-474
Author(s):  
W. A. Nash

Abstract An analytical solution is presented for the problem of the elastic instability of a multiple-bay ring-reinforced cylindrical shell subject to hydrostatic pressure applied in both the radial and axial directions. The method used is that of minimization of the total potential. Expressions for the elastic strain energy in the shell and also in the rings are written in terms of displacement components of a point in the middle surface of the shell. Expressions for the work done by the external forces acting on the cylinder likewise are written in terms of these displacement components. A displacement configuration for the buckled shell is introduced which is in agreement with experimental evidence, in contrast to the arbitrary patterns assumed by previous investigators. The total potential is expressed in terms of these displacement components and is then minimized. As a result of this minimization a set of linear homogeneous equations is obtained. In order that a nontrivial solution to this system of equations exists, it is necessary that the determinant of the coefficients vanish. This condition determines the critical pressure at which elastic buckling of the cylindrical shell will occur.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Christopher Gilles Doherty ◽  
Steve C. Southward ◽  
Andrew J. Hull

Reinforced cylindrical shells are used in numerous industries; common examples include undersea vehicles, aircraft, and industrial piping. Current models typically incorporate approximation theories to determine shell behavior, which are limited by both thickness and frequency. In addition, many applications feature coatings on the shell interior or exterior that normally have thicknesses which must also be considered. To increase the fidelity of such systems, this work develops an analytic model of an elastic cylindrical shell featuring periodically spaced ring stiffeners with a coating applied to the outer surface. There is an external fluid environment. Beginning with the equations of elasticity for a solid, spatial-domain displacement field solutions are developed incorporating unknown wave propagation coefficients. These fields are used to determine stresses at the boundaries of the shell and coating, which are then coupled with stresses from the stiffeners and fluid. The stress boundary conditions contain double-index infinite summations, which are decoupled, truncated, and recombined into a global matrix equation. The solution to this global equation results in the displacement responses of the system as well as the exterior scattered pressure field. An incident acoustic wave excitation is considered. Thin-shell reference models are used for validation, and the predicted system response to an example simulation is examined. It is shown that the reinforcing ribs and coating add significant complexity to the overall cylindrical shell model; however, the proposed approach enables the study of structural and acoustic responses of the coupled system.


Author(s):  
S. Harutyunyan ◽  
D. J. Hasanyan ◽  
R. B. Davis

Formulation is derived for buckling of the circular cylindrical shell with multiple orthotropic layers and eccentric stiffeners acting under axial compression, lateral pressure, and/or combinations thereof, based on Sanders-Koiter theory. Buckling loads of circular cylindrical laminated composite shells are obtained using Sanders-Koiter, Love, and Donnell shell theories. These theories are compared for the variations in the stiffened cylindrical shells. To further demonstrate the shell theories for buckling load, the following particular case has been discussed: Cross-Ply with N odd (symmetric) laminated orthotropic layers. For certain cases the analytical buckling loads formula is derived for the stiffened isotropic cylindrical shell, when the ratio of the principal lamina stiffness is F = E2/E1 = 1. Due to the variations in geometrical and physical parameters in theory, meaningful general results are complicated to present. Accordingly, specific numerical examples are given to illustrate application of the proposed theory and derived analytical formulas for the buckling loads. The results derived herein are then compared to similar published work.


2006 ◽  
Vol 324-325 ◽  
pp. 523-526 ◽  
Author(s):  
Gang Chen ◽  
Qing Ping Zhang ◽  
Zhong Fu Chen ◽  
Si Zhong Li ◽  
Yu Ze Chen

Cylindrical shell is a kind of common used structure in engineering. Interest in the response of cylindrical shells to local impact loading has increased over the last few years. A structure always endures working load more or less. For a cylindrical shell, the working load commonly is internally pressure. In this paper, a numeral simulation of wedge block impact internally Pressured cylindrical shell was carried out. The dynamic failure process of the structure was obtained. The consistency between experimental observation and numerical simulation is satisfactory.


Sign in / Sign up

Export Citation Format

Share Document