Efficiency Improvement in Precombustion CO2 Removal Units With a Waste–Heat Recovery ORC Power Plant

Author(s):  
Carsten Trapp ◽  
Piero Colonna

This paper presents an analysis about recovering low-grade thermal energy from a precombustion CO2 capture process as part of an integrated gasification combined cycle (IGCC) power plant by means of organic rankine cycle (ORC) turbogenerators. The distinguishing feature of this system is the thermal energy source that is a syngas-water mixture, which is cooled from a temperature of approximately 140 °C, and partly condenses due to the heat transfer to the ORC primary heat exchanger. This study explores various types of ORC power systems for this application. The performance of commercially available ORC units is used as a benchmark and compared to the performance of two types of tailor-designed ORC power plants. The working fluid has a major influence on system performance and other technical and economic factors. The effect of selecting a fluid from the hydrocarbon and refrigerant families are therefore investigated, targeting the maximum net power output. In addition to pure fluids, two-component mixtures are also considered. The use of mixtures as working fluids in subcritical heat-recovery ORC systems allows for a better match of the temperature profiles in the primary heat exchanger and the condenser due to the temperature glide associated with phase-transition, leading to lower irreversibilities within the heat exchanging equipment. In order to further improve the thermal coupling between the cooling heat source and the heating of the working fluid, the supercritical cycle configuration is also studied. The performance of the three categories of systems, depending on working fluid and cycle configuration, i.e., systems based on (i) commercially available units, (ii) tailor-designed subcritical cycle, (iii) tailor-designed supercritical cycle, are analyzed in terms of net power output, second law efficiency, and component-based exergy efficiencies. The analysis shows that an improvement of 38.0% in terms of net power output compared to the benchmark system can be achieved by an optimized supercritical ORC power plant using an R134a/R236fa mixture as the working fluid. It is estimated that the total power consumption of the considered exemplary CO2 capture plant can be reduced by approximately 10% with the optimal ORC system. In this study, particular attention is focused on the semi-empirical optimization approach, in order to avoid unnecessary computations, and general guidelines are provided.

Author(s):  
Fredrik Ahlgren ◽  
Maria E. Mondejar ◽  
Magnus Genrup ◽  
Marcus Thern

Maritime transportation is a significant contributor to SOx, NOx and particle matter emissions, even though it has a quite low CO2 impact. New regulations are being enforced in special areas that limit the amount of emissions from the ships. This fact, together with the high fuel prices, is driving the marine industry towards the improvement of the energy efficiency of current ship engines and the reduction of their energy demand. Although more sophisticated and complex engine designs can improve significantly the efficiency of the energy systems in ships, waste heat recovery arises as the most influent technique for the reduction of the energy consumption. In this sense, it is estimated that around 50% of the total energy from the fuel consumed in a ship is wasted and rejected in fluid and exhaust gas streams. The primary heat sources for waste heat recovery are the engine exhaust and the engine coolant. In this work, we present a study on the integration of an organic Rankine cycle (ORC) in an existing ship, for the recovery of the main and auxiliary engines exhaust heat. Experimental data from the operating conditions of the engines on the M/S Birka Stockholm cruise ship were logged during a port-to-port cruise from Stockholm to Mariehamn over a period of time close to one month. The ship has four main engines Wärtsilä 5850 kW for propulsion, and four auxiliary engines 2760 kW used for electrical consumers. A number of six load conditions were identified depending on the vessel speed. The speed range from 12–14 knots was considered as the design condition, as it was present during more than 34% of the time. In this study, the average values of the engines exhaust temperatures and mass flow rates, for each load case, were used as inputs for a model of an ORC. The main parameters of the ORC, including working fluid and turbine configuration, were optimized based on the criteria of maximum net power output and compactness of the installation components. Results from the study showed that an ORC with internal regeneration using benzene would yield the greatest average net power output over the operating time. For this situation, the power production of the ORC would represent about 22% of the total electricity consumption on board. These data confirmed the ORC as a feasible and promising technology for the reduction of fuel consumption and CO2 emissions of existing ships.


2020 ◽  
pp. 296-296
Author(s):  
Guidong Huang ◽  
Songyuan Zhang ◽  
Zhong Ge ◽  
Zhiyong Xie ◽  
Zhipeng Yuan ◽  
...  

In this study, the thermal performance of an internal heat exchanger-organic flash cycle system driven by geothermal water was investigated.R600a/R601a mixtures were selected as the working fluid. The effects of the mole fraction of mixtures on the heat absorption capacity of the heater, the temperature rise of cold working fluid in the internal heat exchanger, net power output, thermal efficiency, and electricity generation costs were analyzed. The net power outputs, electricity generation costs, and thermal efficiency of the internal heat exchanger-organic flash cycle and simple organic flash cycle systems were compared. Results showed that the system using theR600a/R601a mixtures (0.7/0.3mole fraction) has the largest net power output, which increased the net power output by 3.68% and 42.23% over the R601a and R600a systems, respectively. WhentheR600a mole fraction was 0.4, the electricity generation costs reduction of the internal heat exchanger-organic flash cycle system was the largest (1.77% compared with the simple organic flash cycle system).The internal heat exchanger can increase the thermal efficiency of organic flash cycle, but the net power output does not necessarily increase.


Author(s):  
Faming Sun ◽  
Yasuyuki Ikegami

Using ammonia as working fluid, enthalpy equations corresponding to every point in Rankine cycle for low-grade thermal energy conversion (LTEC) are presented by employing curve-fitting method. Analytical equations of Rankine cycle analysis are thus set up. In terms of temperatures of the evaporator and condenser, the equation related to Rankine cycle net power output is then achieved. Furthermore, by using theoretical optimization method, the results of the maximum net power output of a Rankine cycle in LTEC are also reported. This study extends the recent flurry of publications about Rankine cycle power optimization in LTEC, which modified the ideal Rankine cycle to a Carnot cycle by using an average entropic temperature to achieve the theoretical formulas. The proposed method can better reflect the performance of Rankine cycle in LTEC since the current work is mainly based on the direct simulations of every enthalpy points in Rankine cycle. Moreover, the proposed method in this paper is equally applicable for other working mediums, such as water and R134a.


Author(s):  
Giovanni Manente ◽  
Randall Field ◽  
Ronald DiPippo ◽  
Jefferson W. Tester ◽  
Marco Paci ◽  
...  

This article examines how hybridization using solar thermal energy can increase the power output of a geothermal binary power plant that is operating on geothermal fluid conditions that fall short of design values in temperature and flow rate. The power cycle consists of a subcritical organic Rankine cycle using industrial grade isobutane as the working fluid. Each of the power plant units includes two expanders, a vaporizer, a preheater and air-cooled condensers. Aspen Plus was used to model the plant; the model was validated and adjusted by comparing its predictions to data collected during the first year of operation. The model was then run to determine the best strategy for distributing the available geothermal fluid between the two units to optimize the plant for the existing degraded geofluid conditions. Two solar-geothermal hybrid designs were evaluated to assess their ability to increase the power output and the annual energy production relative to the geothermal-only case.


Entropy ◽  
2019 ◽  
Vol 21 (12) ◽  
pp. 1143 ◽  
Author(s):  
Kevin Fontaine ◽  
Takeshi Yasunaga ◽  
Yasuyuki Ikegami

Ocean thermal energy conversion (OTEC) uses the natural thermal gradient in the sea. It has been investigated to make it competitive with conventional power plants, as it has huge potential and can produce energy steadily throughout the year. This has been done mostly by focusing on improving cycle performances or central elements of OTEC, such as heat exchangers. It is difficult to choose a suitable heat exchanger for OTEC with the separate evaluations of the heat transfer coefficient and pressure drop that are usually found in the literature. Accordingly, this paper presents a method to evaluate heat exchangers for OTEC. On the basis of finite-time thermodynamics, the maximum net power output for different heat exchangers using both heat transfer performance and pressure drop was assessed and compared. This method was successfully applied to three heat exchangers. The most suitable heat exchanger was found to lead to a maximum net power output 158% higher than the output of the least suitable heat exchanger. For a difference of 3.7% in the net power output, a difference of 22% in the Reynolds numbers was found. Therefore, those numbers also play a significant role in the choice of heat exchangers as they affect the pumping power required for seawater flowing. A sensitivity analysis showed that seawater temperature does not affect the choice of heat exchangers, even though the net power output was found to decrease by up to 10% with every temperature difference drop of 1 °C.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4623 ◽  
Author(s):  
Liya Ren ◽  
Huaixin Wang

Compared with the basic organic and steam Rankine cycles, the organic trans-critical cycle (OTC), steam flash cycle (SFC) and steam dual-pressure cycle (SDC) can be regarded as the improved cycle configurations for the waste heat power recovery since they can achieve better temperature matching between the heat source and working fluid in the heat addition process. This study investigates and compares the thermodynamic performance of the OTC, SFC, and SDC based on the waste heat source from the cement kiln with an initial temperature of 320 °C and mass flow rate of 86.2 kg/s. The effects of the main parameters on the cycle performance are analyzed and the parameter optimization is performed with net power output as the objective function. Results indicate that the maximum net power output of SDC is slightly higher than that of SFC and the OTC using n-pentane provides a 19.74% increase in net power output over the SDC since it can achieve the higher use of waste heat and higher turbine efficiency. However, the turbine inlet temperature of the OTC is limited by the thermal stability of the organic working fluid, hence the SDC outputs more power than that of the OTC when the initial temperature of the exhaust gas exceeds 415 °C.


Author(s):  
S. Can Gülen ◽  
Chris Hall

This paper describes a gas turbine combined cycle (GTCC) power plant system, which addresses the three key design challenges of postcombustion CO2 capture from the stack gas of a GTCC power plant using aqueous amine-based scrubbing method by offering the following: (i) low heat recovery steam generator (HRSG) stack gas temperature, (ii) increased HRSG stack gas CO2 content, and (iii) decreased HRSG stack gas O2 content. This is achieved by combining two bottoming cycle modifications in an inventive manner, i.e., (i) high supplementary (duct) firing in the HRSG and (ii) recirculation of the HRSG stack gas. It is shown that, compared to an existing natural gas-fired GTCC power plant with postcombustion capture, it is possible to reduce the CO2 capture penalty—power diverted away from generation—by almost 65% and the overall capital cost ($/kW) by about 35%.


Author(s):  
S. Can Gülen

Duct firing in the heat recovery steam generator (HRSG) of a gas turbine combined cycle power plant is a commonly used method to increase output on hot summer days when gas turbine airflow and power output lapse significantly. The aim is to generate maximum possible power output when it is most needed (and, thus, more profitable) at the expense of power plant heat rate. In this paper, using fundamental thermodynamic arguments and detailed heat and mass balance simulations, it will be shown that, under certain boundary conditions, duct firing in the HRSG can be a facilitator of efficiency improvement as well. When combined with highly-efficient aeroderivative gas turbines with high cycle pressure ratios and concomitantly low exhaust temperatures, duct firing can be utilized for small but efficient combined cycle power plant designs as well as more efficient hot-day power augmentation. This opens the door to efficient and agile fossil fuel-fired power generation opportunities to support variable renewable generation.


Author(s):  
P. Lu ◽  
C. Brace ◽  
B. Hu ◽  
C. Copeland

For an internal combustion engine, a large quantity of fuel energy (accounting for approximately 30% of the total combustion energy) is expelled through the exhaust without being converted into useful work. Various technologies including turbo-compounding and the pressurized Brayton bottoming cycle have been developed to recover the exhaust heat and thus reduce the fuel consumption and CO2 emission. However, the application of these approaches in small automotive power plants has been relatively less explored because of the inherent difficulties, such as the detrimental backpressure and higher complexity imposed by the additional devices. Therefore, research has been conducted, in which modifications were made to the traditional arrangement aiming to minimize the weaknesses. The turbocharger of the baseline series turbo-compounding was eliminated from the system so that the power turbine became the only heat recovery device on the exhaust side of the engine, and operated at a higher expansion ratio. The compressor was separated from the turbine shaft and mechanically connected to the engine via CVT. According to the results, the backpressure of the novel system is significantly reduced comparing with the series turbo-compounding model. The power output at lower engine speed was also promoted. For the pressurized Brayton bottoming cycle, rather than transferring the thermal energy from the exhaust to the working fluid, the exhaust gas was directly utilized as the working medium and was simply cooled by ambient coolant before the compressor. This arrangement, which is known as the inverted Brayton cycle was simpler to implement. Besides, it allowed the exhaust gasses to be expanded below the ambient pressure. Thereby, the primary cycle was less compromised by the bottoming cycle. The potential of recovering energy from the exhaust was increased as well. This paper analysed and optimized the parameters (including CVT ratio, turbine and compressor speed and the inlet pressure to the bottoming cycle) that are sensitive to the performance of the small vehicle engine equipped with inverted Brayton cycle and novel turbo-compounding system respectively. The performance evaluation was given in terms of brake power output and specific fuel consumption. Two working conditions, full and partial load (10 and 2 bar BMEP) were investigated. Evaluation of the transient performance was also carried out. Simulated results of these two designs were compared with each other as well as the performance from the corresponding baseline models. The system models in this paper were built in GT-Power which is a one dimension (1-D) engine simulation code. All the waste heat recovery systems were combined with a 2.0 litre gasoline engine.


2014 ◽  
Author(s):  
E. Borquist ◽  
A. Baniya ◽  
S. Thapa ◽  
D. Wood ◽  
L. Weiss

The growing necessity for increased efficiency and sustainability in energy systems such as MEMS devices has driven research in waste heat scavenging. This approach uses thermal energy, which is typically rejected to the surrounding environment, transferred to a secondary device to produce useful power output. This paper investigates a MEMS-based micro-channel heat exchanger (MHE) designed to operate as part of a micro-scale thermal energy scavenging system. Fabrication and operation of the MHE is presented. MHE operation relies on capillary action which drives working fluid from surrounding reservoirs via micro-channels above a heated surface. Energy absorption by the MHE is increased through the use of a working fluid which undergoes phase change as a result of thermal input. In a real-world implementation, the efficiency at which the MHE operates contributes to the thermal efficiency of connected small-scale devices, such as those powered by thermoelectrics which require continual heat transfer. This full system can then more efficiently power MEMS-based sensors or other devices in diverse applications. In this work, the MHE and micro-channels are fabricated entirely of copper with 300μm width channels. Copper electro-deposition onto a copper substrate provides enhanced thermal conductivity when compared to other materials such as silicon or aluminum. The deposition process also increases the surface area of the channels due to porosity. Fabrication with copper produces a robust device, which is not limited to environments where fragility is a concern. The MHE operation has been designed for widespread use in varied environments. The exchanger working fluid is also non-specific, allowing for fluid flexibility for a range of temperatures, depending on the thermal source potential. In these tests, the exchanger shows approximately 8.7 kW/m2 of thermal absorption and 7.6 kW/m2 of thermal transfer for a dry MHE while the wetted MHE had an energy throughput of 8.3 kW/m2. The temperature gradient maintained across the MHE bottom plate and lid is approximately 30 °C for both the dry and wetted MHE tests though overall temperatures were lower for the wetted MHE.


Sign in / Sign up

Export Citation Format

Share Document