Experiment of Heat Transfer to Supercritical Water Flowing in Vertical Annular Channels

2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Zhendong Yang ◽  
Qincheng Bi ◽  
Han Wang ◽  
Gang Wu ◽  
Richa Hu

An experimental study of heat transfer to supercritical water has been performed at Xi'an Jiaotong University with a vertical annular tube. The annular test sections were constructed with an annular gap of 2 mm and an internal heater of 8 mm outer diameter. Experimental parameter covered pressures of 23 and 25 MPa, mass fluxes of 700 and 1000 kg/m2s, and heat fluxes of 200–1000 kW/m2. Experimental data were acquired from downward flow and upward flow, respectively. There were differences of heat-transfer characteristics between the two flow directions. Compared to upward flow, the heat-transfer coefficient increased at downward flow. A strong effect of spacer on heat transfer is observed at locations downstream of the device in the annuli regardless of flow direction. The spacer effect impaired the buoyancy effect at low heat flux, but not for large heat flux. Complex of forced convection and mixed convection in supercritical water is due to various thermophysical properties and the gravity. The affected zone of the spacer effect depends on the flow conditions. The buoyancy effect was analyzed qualitatively in this study and the criterion Gr¯/Re2.7<10-5 for negligible heat-transfer impairment was discussed. Four correlations were compared with the experimental data; the Swenson correlation predicted nearly the experimental data but overpredicted slightly the heat-transfer coefficients.

2014 ◽  
Vol 592-594 ◽  
pp. 1667-1671
Author(s):  
T. Vinoth ◽  
K. Karuppasamy ◽  
D. Santhosh Kumar ◽  
R. Dhanuskodi

In the present work, the heat transfer characteristics of supercritical pressure water are numerically investigated in an upward flow vertical smooth tube. The numerical simulations are carried out by using Ansys-Fluent solver. The objective of the present work is to investigate the effect of heat flux and mass flux on heat transfer characteristics in supercritical water. In order to perform numerical simulation, experimental data of Mokryet al.[2] is considered. Various simulations were carried out for the inlet parameters of temperature 350°C, pressure 240bar; heat flux values ranging from 190 to 884kW/m2and mass flux values ranging from 498 to 1499kg/m2s. Based on the available parameters of heat flux and mass flux, they are segregated as groups with heat flux to mass flux ratios of 0.39 and 0.67. According to computational data, the heat transfer enhancement and heat transfer deterioration phenomenon of supercritical water were analyzed and based on the comparison with experimental data; their occurrence and mechanism were addressed.


Author(s):  
Han Wang ◽  
Qincheng Bi ◽  
Linchuan Wang ◽  
Haicai Lv ◽  
Laurence K. H. Leung

An experiment has recently been performed at Xi’an Jiaotong University to study the wall temperature and pressure drop at supercritical pressures with upward flow of water inside a 2×2 rod bundle. A fuel-assembly simulator with four heated rods was installed inside a square channel with rounded corner. The outer diameter of each heated rod is 8 mm with an effective heated length of 600 mm. Experimental parameters covered the pressure of 23–28 MPa, mass flux of 350–1000 kg/m2s and heat flux on the rod surface of 200–1000 kW/m2. According to the experimental data, it was found that the circumferential wall temperature distribution of a heated rod is not uniform. The temperature difference between the maximum and the minimum varies with heat flux and/or mass flux. Heat transfer characteristics of supercritical water in bundle were discussed with respect to various heat fluxes. The effect of heat flux on heat transfer in rod bundles is similar with that in tubes or annuli. In addition, flow resistance reflected in the form of pressure loss has also been studied. Experimental results showed that the total pressure drop increases with bulk enthalpy and mass flux. Four heat transfer correlations developed for supercritical pressures water were compared with the present test data. Predictions of Jackson correlation agrees closely with the experimental data.


Author(s):  
Hanyang Gu ◽  
Xu Cheng ◽  
Xiaojing Liu

Investigations on the thermal-hydraulic behavior in the SCWR fuel assembly have obtained a significant attention in the international SCWR community. However, there is still a lack of understanding and ability to predict the heat transfer behavior of supercritical fluids. In this paper, the numerical analysis is carried out to study the thermal-hydraulic behaviour in vertical sub-channels cooled by supercritical water. Remarkable differences in characteristics of secondary flow are found, especially in square lattice, between the upward flow and downward flow. The turbulence mixing across sub-channel gap for downward flow is much stronger than that for upward flow in wide lattice when the bulk temperature is lower than pseudo-critical point temperature. For downward flow, heat transfer deterioration phenomenon is suppressed with respect to the case of upward flow at the same conditions.


Author(s):  
E. N. Pis’menny ◽  
V. G. Razumovskiy ◽  
E. M. Maevskiy ◽  
A. E. Koloskov ◽  
I. L. Pioro

The results on heat transfer to supercritical water heated above the pseudocritical temperature or affected by mixed convection flowing upward and downward in vertical tubes of 6.28-mm and 9.50-mm inside diameter are presented. Supercritical water heat-transfer data were obtained at a pressure of 23.5 MPa, mass flux within the range from 250 to 2200 kg/(m2s), inlet temperature from 100 to 415°C and heat flux up to 3.2 MW/m2. Temperature regimes of the tubes cooled with supercritical water in a gaseous state (i.e., supercritical water at temperatures beyond the pseudocritical temperature) were stable and easily reproducible within a wide range of mass and heat fluxes. An analysis of the heat-transfer data for upward and downward flows enabled to determine a range of Gr/Re2 values corresponding to the maximum effect of free convection on the heat transfer. It was shown that: 1) the heat transfer coefficient at the downward flow of water can be higher by about 50% compared to that of the upward flow; and 2) the deteriorated heat-transfer regime is affected with the flow direction, i.e., at the same operating conditions, the deteriorated heat transfer may be delayed at the downward flow compared to that at the upward flow. These heat-transfer data are applicable as the reference dataset for future comparison with bundle data.


Author(s):  
A. Zvorykin ◽  
M. Mahdi ◽  
R. Popov ◽  
K. Barati Far ◽  
I. Pioro

Current Nuclear Power Plants (NPPs) equipped with water-cooled reactors (the vast majority of all NPPs) have relatively low thermal efficiencies within the range of 30–36% compared to those of modern advanced thermal power plants (SuperCritical Pressure (SCP) coal-fired — up to 55% thermal efficiency and combined cycle — up to 62%). Therefore, next generation reactors / NPPs should have higher thermal efficiencies close to those of current thermal power plants. Around 60 years ago thermal-power industry has moved from subcritical pressures to SCPs with the major objective to increase thermal efficiency. Based on this proven in power industry experience it was proposed to design SuperCritical Water-cooled Reactors (SCWRs), which are one of the six Generation-IV nuclear-reactor concepts under development in selected countries. These days, there are discussions on developing even Small Modular Reactors (SMRs) of SCPs. In spite of a large number of experiments in long bare tubes (pipes) cooled with SCW, developing SCWR concepts requires experimental data in bundle geometries cooled with SCW, which are usually shorter and will have smaller diameters. However, such experiments are extremely complicated and expensive plus each bundle geometry will have a unique Heat-Transfer (HT) characteristics due to various bundle designs. Therefore, as a preliminary and a universal approach — experiments in bare tube of shorter heated lengths and of smaller diameters to match heated lengths and hydraulic-equivalent diameters of fuel bundles are required. Current paper provides experimental data obtained in a short (0.6 m) vertical bare tube of a small diameter (6.28 mm) cooled with upward flow of SCW. Analysis of this dataset is also included. Main emphasis of this research is on liquid-like cooling within the possible conditions of future SCWRs and SCW SMRs. Two HT regimes are encountered at these conditions: 1) Normal HT (NHT) and 2) Deteriorated HT (DHT). Conditions at which the DHT regime appeared are discussed.


Author(s):  
Zhendong Yang ◽  
Qincheng Bi ◽  
Han Wang ◽  
Gang Wu ◽  
Laurence K. H. Leung

Eleven correlations proposed for supercritical heat-transfer coefficients were assessed against a set of experimental data obtained recently with supercritical water flow in a vertical annular test section at Xi’an Jiaotong University. The inner heated rod of the test section had an outer diameter of 8 mm, while the outer unheated tube had an inner diameter of 16 mm (resulting in a gap size of 4 mm). The experiment covered pressure range from 23 to 28 MPa, mass-flux range from 350 to 1000 kg/m2s, and heat-flux range from 200 to 1000 kW/m2. The assessment shows relatively good agreement between predicted and experimental heat-transfer coefficients for several correlations. Some discrepancies have been observed at the region where deteriorated heat transfer, and are attributed to the modified Dittus-Boelter formulation that captures mainly the normal heat-transfer region. Overall, the Dittus-Boelter correlation is shown applicable only for the normal heat-transfer region, and significantly overpredicts the heat-transfer coefficient at the deteriorated heat-transfer region. The correlation of Bishop et al. appears valid for the current experimental database, particularly for high mass fluxes.


1996 ◽  
Vol 118 (3) ◽  
pp. 592-597 ◽  
Author(s):  
T. S. Zhao ◽  
P. Cheng

An experimental and numerical study has been carried out for laminar forced convection in a long pipe heated by uniform heat flux and subjected to a reciprocating flow of air. Transient fluid temperature variations in the two mixing chambers connected to both ends of the heated section were measured. These measurements were used as the thermal boundary conditions for the numerical simulation of the hydrodynamically and thermally developing reciprocating flow in the heated pipe. The coupled governing equations for time-dependent convective heat transfer in the fluid flow and conduction in the wall of the heated tube were solved numerically. The numerical results for time-resolved centerline fuid temperature, cycle-averaged wall temperature, and the space-cycle averaged Nusselt number are shown to be in good agreement with the experimental data. Based on the experimental data, a correlation equation is obtained for the cycle-space averaged Nusselt number in terms of appropriate dimensionless parameters for a laminar reciprocating flow of air in a long pipe with constant heat flux.


Author(s):  
V. G. Razumovskiy ◽  
Eu. N. Pis’mennyy ◽  
A. Eu. Koloskov ◽  
I. L. Pioro

The results of heat transfer to supercritical water flowing upward in a vertical annular channel (1-rod channel) and tight 3-rod bundle consisting of the tubes of 5.2-mm outside diameter and 485-mm heated length are presented. The heat-transfer data were obtained at pressures of 22.5, 24.5, and 27.5 MPa, mass flux within the range from 800 to 3000 kg/m2·s, inlet temperature from 125 to 352°C, outlet temperature up to 372°C and heat flux up to 4.6 MW/m2 (heat flux rate up to 2.5 kJ/kg). Temperature regimes of the annular channel and 3-rod bundle were stable and easily reproducible within the whole range of the mass and heat fluxes, even when a deteriorated heat transfer took place. The data resulted from the study could be applicable for a reference estimation of heat transfer in future designs of fuel bundles.


Author(s):  
Jong-Shang Liu ◽  
Mark C. Morris ◽  
Malak F. Malak ◽  
Randall M. Mathison ◽  
Michael G. Dunn

In order to have higher power to weight ratio and higher efficiency gas turbine engines, turbine inlet temperatures continue to rise. State-of-the-art turbine inlet temperatures now exceed the turbine rotor material capability. Accordingly, one of the best methods to protect turbine airfoil surfaces is to use film cooling on the airfoil external surfaces. In general, sizable amounts of expensive cooling flow delivered from the core compressor are used to cool the high temperature surfaces. That sizable cooling flow, on the order of 20% of the compressor core flow, adversely impacts the overall engine performance and hence the engine power density. With better understanding of the cooling flow and accurate prediction of the heat transfer distribution on airfoil surfaces, heat transfer designers can have a more efficient design to reduce the cooling flow needed for high temperature components and improve turbine efficiency. This in turn lowers the overall specific fuel consumption (SFC) for the engine. Accurate prediction of rotor metal temperature is also critical for calculations of cyclic thermal stress, oxidation, and component life. The utilization of three-dimensional computational fluid dynamics (3D CFD) codes for turbomachinery aerodynamic design and analysis is now a routine practice in the gas turbine industry. The accurate heat-transfer and metal-temperature prediction capability of any CFD code, however, remains challenging. This difficulty is primarily due to the complex flow environment of the high-pressure turbine, which features high speed rotating flow, coupling of internal and external unsteady flows, and film-cooled, heat transfer enhancement schemes. In this study, conjugate heat transfer (CHT) simulations are performed on a high-pressure cooled turbine stage, and the heat flux results at mid span are compared to experimental data obtained at The Ohio State University Gas Turbine Laboratory (OSUGTL). Due to the large difference in time scales between fluid and solid, the fluid domain is simulated as steady state while the solid domain is simulated as transient in CHT simulation. This paper compares the unsteady and transient results of the heat flux on a high-pressure cooled turbine rotor with measurements obtained at OSUGTL.


Author(s):  
Da Liu ◽  
Fujun Gan ◽  
Chaozhu Zhang ◽  
Hanyang Gu

Experiments of heat transfer at low flow rate are performed in a 5×5 square arrayed rod bundles. The diameter of the rod is 10mm with a pitch of 13.3mm, length of the test section is about 3 meters. Inlet Reynold number ranges from 2000 to 30000, Bo * ranges from 4×10−6 to 5×10−3. The rods are heated using a DC power, the heat flux ranges from 30 to 300 kW/m2. The experiment is aimed to investigate the buoyancy effect of mixed convection in rod bundles. The experimental data shows that similar with mixed convection in circular channels, buoyancy force has great effect on heat transfer at mixed convection regime in rod bundles. But the buoyancy effect appears at higher Bo* conditions. The spacer effect have also been investigated at both turbulent forced convection regime and mixed convection regime. The reconstruction of heat transfer downstream of spacers is different at different flow regimes, a reasonable explanation was provided.


Sign in / Sign up

Export Citation Format

Share Document