Filter Cake Properties of Water-Based Drilling Fluids Under Static and Dynamic Conditions Using Computed Tomography Scan

2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Salaheldin Elkatatny ◽  
Mohamed Mahmoud ◽  
Hisham A. Nasr-El-Din

Previous studies considered the water-based drilling fluid filter cake as homogenous, containing one layer with an average porosity and permeability. The filter cake was recently proved to be heterogeneous, containing two layers with different properties (thickness, porosity and permeability). Heterogeneity of the filter cake plays a key role in the design of chemical treatments needed to remove the filter cake. The objectives of this study are to describe filter cake buildup under static and dynamic conditions, determine change in the filter medium properties, and obtain the local filtration properties for each layer in the filter cake. A high pressure high temperature (HPHT) filter press was used to perform the filtration process at 225 °F and 300 psi. A CT (computed tomography) scanner was used to measure the thickness and porosity of the filter cake. The results obtained from the CT scan showed that under static conditions, the formation of filter cake changed from compression to buildup; while under dynamic conditions, the filter cake was formed under continuous buildup. The CT results explained the changes in the thickness and porosity of each layer of the filter cake with time. The CT scans showed the change in the properties of the ceramic disk, such as porosity and permeability, which affect the calculation of the filter cake permeability. The change of the properties of the filter medium was ignored in previous studies.

2021 ◽  
Vol 5 (2) ◽  
pp. 1-14
Author(s):  
Mahmoud O

The increasing demand for deeper drilling and more complicated wells fastens the way for improved drilling fluid (mud) technologies and promising additives. Several studies have shown numerous improvements in mud characteristics upon using ilmenite compared to the commonly used weighting materials. This study aims at investigating the removal of filter cake deposited by ilmenite water-based drilling fluid under harsh conditions using low-concentration (7.5 wt%) of hydrochloric acid (HCl) and chelating agent (HEDTA) to prevent iron precipitation during reaction. API filter press was used to conduct the filtration tests and generate the filter cake at a pressure ~ 300 psi and temperature ~ 250°F. Different sandstone cores of 2.5-in. diameter and 1-in. thickness were used to simulate the formation during filtration. Filtrate fluids were collected for 30 minutes as per API procedures and computerized tomography (CT) scan was used to characterize the cores with the deposited filter cakes. The filter cakes were soaked with HCl–chelate solution for six hours. Cores with the remaining filter cakes were CT scanned again. Effluent solutions resulting from the aforementioned soaking process were analyzed using inductively coupled plasma (ICP). Scanning electron microscopy–energy dispersive spectroscopy (SEM-EDS) was used to analyze the dried filter cakes and remaining residue. CT scan and SEM-EDS showed two layers of the filter cake with different densities but similar elemental composition. Using 7.5 wt% of HCl can partially remove the filter cake generated by ilmenite water-based drilling fluids. Adding the chelate showed minimal impact on the filter cake removal-efficiency; however, it helped nullify the corrosion issues during the treatment. This study provides a step forward on the way to chemically remove ilmenite-based filter cake using low acid concentration and virtually overcome corrosion issues encountered while acidizing.


Author(s):  
Massara Salam ◽  
Nada S. Al-Zubaidi ◽  
Asawer A. Al-Wasiti

In the process of drilling directional, extended-reach, and horizontal wells, the frictional forces between the drill string and the wellbore or casing can cause severe problems including excessive torque which is one of the most important problems during drilling oil and gas well. Drilling fluid plays an important role by reducing these frictional forces. In this research, an enhancement of lubricating properties of drilling fluids was fundamentally examined by adding Lignite NPs into the water-based drilling fluid. Lubricity, Rheology and filtration properties of water-based drilling fluid were measured at room temperature using OFITE EP and Lubricity Tester, OFITE Model 900 Viscometer, and OFITE Low-Pressure Filter Press, respectively. Lignite NPs were added at different concentrations (0.05 %, 0.1 %, 0.2 %, 0.5 %, and 1 %) by weight into water-based drilling fluid. Lignite NPs showed good reduction in COF of water-based drilling fluid. The enhancement was increased with increasing Lignite NPs concentrations; 23.68%, 35.52%, and 45.3 % reduction in COF were obtained by adding 0.2%, 0.5%, and 1% by weight Lignite NPs concentration, respectively.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1945 ◽  
Author(s):  
Salem Basfar ◽  
Abdelmjeed Mohamed ◽  
Salaheldin Elkatatny ◽  
Abdulaziz Al-Majed

Barite sag is a serious problem encountered while drilling high-pressure/high-temperature (HPHT) wells. It occurs when barite particles separate from the base fluid leading to variations in drilling fluid density that may cause a serious well control issue. However, it occurs in vertical and inclined wells under both static and dynamic conditions. This study introduces a combined barite–ilmenite weighting material to prevent the barite sag problem in water-based drilling fluid. Different drilling fluid samples were prepared by adding different percentages of ilmenite (25, 50, and 75 wt.% from the total weight of the weighting agent) to the base drilling fluid (barite-weighted). Sag tendency of the drilling fluid samples was evaluated under static and dynamic conditions to determine the optimum concentration of ilmenite which was required to prevent the sag issue. A static sag test was conducted under both vertical and inclined conditions. The effect of adding ilmenite to the drilling fluid was evaluated by measuring fluid density and pH at room temperature, and rheological properties at 120 °F and 250 °F. Moreover, a filtration test was performed at 250 °F to study the impact of adding ilmenite on the drilling fluid filtration performance and sealing properties of the formed filter cake. The results of this study showed that adding ilmenite to barite-weighted drilling fluid increased fluid density and slightly reduced the pH within the acceptable pH range (9–11). Ilmenite maintained the rheology of the drilling fluid with a minimal drop in rheological properties due to the HPHT conditions, while a significant drop was observed for the base fluid (without ilmenite). Adding ilmenite to the base drilling fluid significantly reduced sag factor and 50 wt.% ilmenite was adequate to prevent solids sag in both dynamic and static conditions with sag factors of 0.33 and 0.51, respectively. Moreover, HPHT filtration results showed that adding ilmenite had no impact on filtration performance of the drilling fluid. The findings of this study show that the combined barite–ilmenite weighting material can be a good solution to prevent solids sag issues in water-based fluids; thus, drilling HPHT wells with such fluids would be safe and effective.


2017 ◽  
Vol 140 (5) ◽  
Author(s):  
Jimoh K. Adewole ◽  
Musa O. Najimu

This study investigates the effect of using date seed-based additive on the performance of water-based drilling fluids (WBDFs). Specifically, the effects of date pit (DP) fat content, particle size, and DP loading on the drilling fluids density, rheological properties, filtration properties, and thermal stability were investigated. The results showed that dispersion of particles less than 75 μm DP into the WBDFs enhanced the rheological as well as fluid loss control properties. Optimum fluid loss and filter cake thickness can be achieved by addition of 15–20 wt % DP loading to drilling fluid formulation.


Author(s):  
Petar Mijić ◽  
Nediljka Gaurina-Međimurec ◽  
Borivoje Pašić

About 75% of all formations drilled worldwide are shale formations and 90% of all wellbore instability problems occur in shale formations. This increases the overall cost of drilling. Therefore, drilling through shale formations, which have nanosized pores with nanodarcy permeability still need better solutions since the additives used in the conventional drilling fluids are too large to plug them. One of the solutions to drilling problems can be adjusting drilling fluid properties by adding nanoparticles. Drilling mud with nanoparticles can physically plug nanosized pores in shale formations and thus reduce the shale permeability, which results in reducing the pressure transmission and improving wellbore stability. Furthermore, the drilling fluid with nanoparticles, creates a very thin, low permeability filter cake resulting in the reduction of the filtrate penetration into the shale. This thin filter cake implies high potential for reducing the differential pressure sticking. In addition, borehole problems such as too high drag and torque can be reduced by adding nanoparticles to drilling fluids. This paper presents the results of laboratory examination of the influence of commercially available nanoparticles of SiO2 (dry SiO2 and water-based dispersion of 30 wt% of silica), and TiO2 (water-based dispersion of 40 wt% of titania) in concentrations of 0.5 wt% and 1 wt% on the properties of water-based fluids. Special emphasis is put on the determination of lubricating properties of the water-based drilling fluids. Nanoparticles added to the base mud without any lubricant do not improve its lubricity performance, regardless of their concentrations and type. However, by adding 0.5 wt% SiO2-disp to the base mud with lubricant, its lubricity coefficient is reduced by 4.6%, and by adding 1 wt% TiO2-disp to the base mud with lubricant, its lubricity coefficient is reduced by 14.3%.


2021 ◽  
Vol 11 (1) ◽  
pp. 137-145
Author(s):  
Hani Ali Al Khalaf ◽  
Zeeshan Ahmad ◽  
Gabriella Kovácsné Federer

This study aims to evaluate the effect of wheat flour as a natural and environmentally friendly material on the properties of water-based mud. Recently, many experiments have been conducted with various additives to improve the properties of drilling fluids. The effect of using wheat flour as a new additive to drilling fluid was studied to improve rheological and filtration properties. In the laboratory several samples of water-based mud were prepared, different concentrations of wheat flour from 1 wt% to 7 wt% were added to the mud and tested by using a Fann 35 viscometer, 140 Fann Mud balance, and an API LT-LP filter press. The results showed that adding 7 wt% of wheat flour was the optimal concentration. It was found that the apparent viscosity and yield point increased by 50% and 35%, respectively, when 7 wt% of wheat flour was added to the water-based drilling fluid. Likewise, the fluid loss rate was reduced by 25% when using the same concentration of wheat flour.


Author(s):  
James L. Nielsen ◽  
Syed Y. Nahri ◽  
Wei Zhao ◽  
Panfeng Wei ◽  
Yuanhang Chen

Abstract This study investigates how different sized fibers used commonly as Lost Circulation Material (LCM) change the time required for induction and agglomeration of natural gas hydrates in drilling fluids using laboratory experimentally obtained data. Three different sizes of LCM fibers, fine, medium and coarse, were studied to observe how the size of each type of fiber affects the rate of hydrates growth. THF-Water clathrate hydrates were used as a model for hydrate growth at standard pressure conditions using a 20:80 molar ratio of THF to water. The concentrations of LCM fibers tested varied between 1–3% by weight. Each type of fiber was tested individually at −6 °C, −3 °C, and 0 °C and monitored for changes in hydrate induction and agglomeration rates. Tests were repeated using water-based drilling fluids using bentonite as the primary viscosifier and barite as a weighting agent to test 10, 12, and 14 ppg fluids. Fibers were tested under static conditions to identify changes in the nucleation and agglomeration rates for each. The rates of hydrate nucleation between samples of THF-Water and LCM fibers and each sample of water-based drilling fluid with LCM fibers was found to be consistent with no statistically significant change in rate being observed due to the fibers present. However, we observed a significant change in the rate of agglomeration that was dependent on the size and concentration of the fiber particles. We identified that fine fibers provided the most significant increase in the rate of agglomeration followed by medium and coarse fibers, respectively, with increasing LCM fiber concentrations. Compared to control samples, using fibers produced initial hydrate agglomeration around the freely suspended fibers. Due to their proximity to other fibers with hydrates developing around them, the hydrates were able to form very large free moving crystals in the solution before completely agglomerating and forming a solid plug. The results and conclusions provide new insights and guidance in drilling fluids and LCM design for offshore deep-water drilling. Gas hydrates can potentially develop and agglomerate along in the BOP and kill/choke lines during a well control event, as what is suspected as what happened in Macondo blowout where a considerable amount LCMs were used during drilling and as a spacer during a negative pressure test.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Xin Zhao ◽  
Zhengsong Qiu ◽  
Mingliang Wang ◽  
Weian Huang ◽  
Shifeng Zhang

Drilling fluid with proper rheology, strong shale, and hydrate inhibition performance is essential for drilling ultralow temperature (as low as −5 °C) wells in deepwater and permafrost. In this study, the performance of drilling fluids together with additives for ultralow temperature wells has been evaluated by conducting the hydrate inhibition tests, shale inhibition tests, ultralow temperature rheology, and filtration tests. Thereafter, the formulation for a highly inhibitive water-based drilling fluid has been developed. The results show that 20 wt % NaCl can give at least a 16-h safe period for drilling operations at −5 °C and 15 MPa. Polyalcohol can effectively retard pore pressure transmission and filtrate invasion by sealing the wellbore above the cloud point, while polyetheramine can strongly inhibit shale hydration. Therefore, a combination of polyalcohol and polyetheramine can be used as an excellent shale stabilizer. The drilling fluid can prevent hydrate formation under both stirring and static conditions. Further, it can inhibit the swelling, dispersion, and collapse of shale samples, thereby enhancing wellbore stability. It has better rheological properties than the typical water-based drilling fluids used in onshore and offshore drilling at −5 °C to 75 °C. In addition, it can maintain stable rheology after being contaminated by 10 wt % NaCl, 1 wt % CaCl2, and 5 wt % shale cuttings. The drilling fluid developed in this study is therefore expected to perform well in drilling ultralow temperature wells.


2020 ◽  
Vol 12 (7) ◽  
pp. 2719 ◽  
Author(s):  
Abdelmjeed Mohamed ◽  
Saad Al-Afnan ◽  
Salaheldin Elkatatny ◽  
Ibnelwaleed Hussein

Barite sag is a challenging phenomenon encountered in deep drilling with barite-weighted fluids and associated with fluid stability. It can take place in vertical and directional wells, whether in dynamic or static conditions. In this study, an anti-sagging urea-based additive was evaluated to enhance fluid stability and prevent solids sag in water-based fluids to be used in drilling, completion, and workover operations. A barite-weighted drilling fluid, with a density of 15 ppg, was used with the main drilling fluid additives. The ratio of the urea-based additive was varied in the range 0.25–3.0 vol.% of the total base fluid. The impact of this anti-sagging agent on the sag tendency was evaluated at 250 °F using vertical and inclined sag tests. The optimum concentration of the anti-sagging agent was determined for both vertical and inclined wells. The effect of the urea-additive on the drilling fluid rheology was investigated at low and high temperatures (80 °F and 250 °F). Furthermore, the impact of the urea-additive on the filtration performance of the drilling fluid was studied at 250 °F. Adding the urea-additive to the drilling fluid improved the stability of the drilling fluid, as indicated by a reduction in the sag factor. The optimum concentration of this additive was found to be 0.5–1.0 vol.% of the base fluid. This concentration was enough to prevent barite sag in both vertical and inclined conditions at 250 °F, with a sag factor of around 0.5. For the optimum concentration, the yield point and gel strength (after 10 s) were improved by around 50% and 45%, respectively, while both the plastic viscosity and gel strength (after 10 min) were maintained at the desired levels. Moreover, the anti-sagging agent has no impact on drilling fluid density, pH, or filtration performance.


Sign in / Sign up

Export Citation Format

Share Document