Unsteady Flow of Magneto Thermomicropolar Fluid in a Porous Channel With Peristalsis: Unsteady Separation

2013 ◽  
Vol 135 (7) ◽  
Author(s):  
Y. Abd Elmaboud

The magneto thermodynamic aspects of micropolar fluid (blood model) through an isotropic porous medium in a nonuniform channel with rhythmically contracting walls have been investigated. The flow analysis has been discussed under long wavelength and low Reynolds number approximations. The closed form solutions are obtained for velocity components, microrotation, heat transfer, as well as the wall vorticity. The modified Newton–Raphson method is used to predict the unsteady flow separation points along the peristaltic wall. Numerical computations have been carried out for the pressure rise per wavelength. The study shows that peristaltic transport, fluid velocity, microrotation velocity, and wall shear stress are significantly affected by the nonuniform geometry of the blood vessels. Moreover, the amplitude ratio, the coupling number, the micropolar parameter, and the magnetic parameter are important parameters that affect the flow behavior.

2019 ◽  
Vol 393 ◽  
pp. 16-30 ◽  
Author(s):  
Gudekote Manjunatha ◽  
Hanumesh Vaidya ◽  
Choudhari Rajashekhar ◽  
K.V. Prasad

The present paper investigates the role of heat transfer on peristaltic transport of Jeffery liquid in a porous tube. The effect of variable viscosity and slip impacts are taken into account. The closed-form solutions are obtained with the help of long wavelength and small Reynolds number. The results of physiological parameters on velocity, pressure rise, frictional force, trapped bolus, and temperature are plotted graphically. It is seen that the pressure rise and the frictional forces decline with an expansion in the viscosity parameter. The study further demonstrates that an increase in the value of the slip parameter significantly alters the pressure rise, frictional force, and temperature. Moreover, the volume of trapped bolus increases with an increase in the value of the velocity slip parameter.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 49 ◽  
Author(s):  
J. Prakash ◽  
E. P.Siva ◽  
A. Govindarajan ◽  
M. Vidhya

The peristaltic flow of a viscoelastic fluid in the tapered microchannel with variable viscosity is investigated. This study is reinvigorated by discovering fluid dynamic in peristaltic motion as signified by biological flows, pharmacodynamics and gastro-intestinal motility enhancement. The microchannel non-uniform and asymmetry is developed by choosing a peristaltic wave train on the wall with different amplitudes and phases. The flow analysis has been arisen for low Reynolds number and long wavelength case. The solutions for stream function, axial velocity and pressure gradient are obtained. The effects of pertinent parameters on the average pressure rise per wavelength are investigated by means of numerical integration. The axial velocity and phenomena of trapping are further discussed.  


2008 ◽  
Vol 5 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Kh. S. Mekheimer ◽  
Y. Abd Elmaboud

A serious pathological condition is encountered when some blood constituents deposited on the blood vessels get detached from the wall, join the blood stream again and form a clot. Study of the peristaltic transport of a micropolar fluid in an annular region is investigated under low Reynolds number and long wavelength approximations. We model a small artery as a tube having a sinusoidal wave travelling down its wall and a clot model inside it. Closed form solutions are obtained for the velocity and the microrotation components, as well as the stream function, and they contain new additional parameters, namely, δ, the height of the clot,N, the coupling number andm, the micropolar parameter. The pressure rise and friction force on the inner and the outer tubes have been discussed for various values of the physical parameters of interest.


2010 ◽  
Vol 65 (3) ◽  
pp. 191-196 ◽  
Author(s):  
Nasir Ali ◽  
Muhammad Sajid ◽  
Tasawar Hayat

This study is concerned with the peristaltic flow of a viscous fluid in a curved channel. Mathematically the problem is governed by two partial differential equations. Closed form solutions of the stream function, axial velocity, and pressure gradient are developed under long wavelength and low Reynolds number assumptions. The influence of curvature is analyzed on various flow quantities of interest.


2016 ◽  
Vol 14 (5) ◽  
pp. 1101-1111 ◽  
Author(s):  
Noreen Sher Akbar ◽  
Liaqat Ali Khan ◽  
Zafar Hayat Khan

Abstract In this article, we have considered an incompressible nanofluids flow and studied the effects of variable viscosity in the form of a well-known Reynold’s model of viscosity in an asymmetric channel. The fluid viscosity is assumed to vary as an exponential function of temperature. The governing fundamental equations are approximated under the assumption of long wavelength and low Reynold,s number. The governing momentum and energy and nanoparticle equations are solved using shooting technique to obtain the expressions for stream functions, pressure rise temperature and nanoparticle concentration field. Trapping phenomena are also discussed at the end of the article to see the behaviour of different parameters on streamlines. It is analyzed that the pressure rise and amount of flow rate are charitable conflicting consequences. It is analyzed that the temperature profile increases with the increase in Prandtl parameter Pr, the Brownian motion parameter ${N_b}$ and the thermophoresis parameter ${N_t}$ .


1991 ◽  
Vol 113 (4) ◽  
pp. 654-659 ◽  
Author(s):  
F. Bario ◽  
L. Barral ◽  
G. Bois

Within the framework of the technological development of the VULCAIN rocket engine (Ariane V European project), initiated by the Centre National d’Etudes Spatiales (CNES) for the Agence Spatiale Europe´enne (ESA), the Socie´te´ Europe´enne de Propulsion (SEP) is in charge of the design and building of the liquid hydrogen turbopump. In order to characterize the hydraulic performance of the pump, an air test facility reproducing the pump geometry was built by SEP and fitted in the Laboratoire de Me´canique des Fluides et d’Acoustique of the Ecole Centrale de Lyon. Benefits and disadvantages of air tests of hydraulic pumps are discussed. The pump is composed of three stages. The first one is an axial inducer stage. The second and third ones are centrifugal stages with vaned diffusers and are separated by a U bend and a vaned return channel. Results of the first measurement campaign are presented. They consist of overall pressure, wall static pressure and velocity measurements. Local quantities (velocity triangle, pressure) and mean quantities (pressure rise, losses, efficiency) are given. Recirculating and wake flow analysis are included. The goals of the study are the understanding of the flow behavior and the improvement of the prediction methods. Predicted and measured quantities (losses, efficiency, kinetic momentum) are compared. The hydrogen performances are deduced, they agree with the specified performances of the pump. This validation is one of the main results achieved.


This paper concerns with the transfer of heat and hall current effects on peristaltic flow of a Bingham fluid in a channel is analysis. Resulting differential equations after implementation of small Reynolds number and long wavelength considerations are numerically solved. The expressions for different parameters like pressure rise, flow rate and frictional force are determined. The effect of magnetic field, Darcy number, yield stress, amplitude ratio, Hall parameter and the temperature on pressure gradient, pumping characteristics and frictional force are discussed through nature of graphs


Open Physics ◽  
2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Hassan Rachid

AbstractIn the present study,we investigate the unsteady peristaltic transport of a viscoelastic fluid with fractional Burgers’ model in an inclined tube. We suppose that the viscosity is variable in the radial direction. This analysis has been carried out under low Reynolds number and long-wavelength approximations. An analytical solution to the problem is obtained using a fractional calculus approach. Figures are plotted to show the effects of angle of inclination, Reynolds number, Froude number, material constants, fractional parameters, parameter of viscosity and amplitude ratio on the pressure gradient, pressure rise, friction force, axial velocity and on the mechanical efficiency.


2019 ◽  
Vol 392 ◽  
pp. 158-177 ◽  
Author(s):  
Hanumesh Vaidya ◽  
Choudhari Rajashekhar ◽  
Gudekote Manjunatha ◽  
K.V. Prasad

The present study investigates the effects of slip and heat transfer on peristaltic mechanism of Bingham fluid in an inclined tube. The sinusoidal, multi-sinusoidal, triangular, square and trapezoidal wave forms are considered. The analysis has been carried out under the assumptions of long wavelength and small Reynold's number approximations. The closed-form solutions are obtained for velocity, plug flow velocity, pressure gradient, streamlines, and temperature. The numerical integration is employed to investigate the effects of pressure rise and frictional force. The influence of relevant parameters on physiological quantities of interest is analyzed and discussed through graphs. The study reveals that velocity and thermal slip have a decreasing effect on velocity and temperature. Further, it is noticed that the volume of trapped bolus increases for increasing values of velocity slip parameter.


2008 ◽  
Vol 5 (2) ◽  
pp. 47-57 ◽  
Author(s):  
K. S. Mekheimer ◽  
Y. Abd Elmaboud

This study looks at the influence of an endoscope on the peristaltic flow of a particle–fluid suspension (as blood model) through tubes. A long wavelength approximation through a uniform and non-uniform infinite annulus filled with an incompressible viscous and Newtonian fluid mixed with rigid spherical particles of identical size is investigated theoretically. The inner tube is uniform, rigid and moving with a constant velocity V0, whereas the outer non-uniform tube has a sinusoidal wave travelling down its wall. The axial velocity of the fluid phase uf, particulate phase upand the pressure gradients have been obtained in terms of the dimensionless flow rateQ, the amplitude ratioɸ, particle concentrationC, the velocity constant V0and the radius ratio ϵ (the ratio between the radius of the inner tube and the radius of the outer one at the inlet). Numerical calculations for various values of the physical parameters of interest are carried out for the pressure rise and the friction force on the inner and the outer tubes.


Sign in / Sign up

Export Citation Format

Share Document