Stochastic Modeling of Microgrinding Wheel Topography

2013 ◽  
Vol 1 (2) ◽  
Author(s):  
Jacob A. Kunz ◽  
J. Rhett Mayor

Superabrasive microgrinding wheels are used for jig grinding of microstructures using various grinding approaches. The desire for increased final geometric accuracy in microgrinding leads to the need for improved process modeling and understanding. An improved understanding of the source of wheel topography characteristics leads to better knowledge of the interaction between the individual grits on the wheel and the grinding workpiece. Analytic stochastic modeling of the abrasives in a general grinding wheel is presented as a method to stochastically predict the wheel topography. The approach predicts the probability of the number of grits within a grind wheel, the individual grit locations within a given wheel structure, and the static grit density within the wheel. The stochastic model is compared to numerical simulations that imitate both the assumptions of the analytic model where grits are allowed to overlap and the more realistic scenario of a grind wheel where grits cannot overlap. A new technique of grit relocation through collective rearrangement is used to limit grit overlap. The results show that the stochastic model can accurately predict the probability of the static grit density while providing results two orders of magnitude faster than the numerical simulation techniques. It is also seen that grit overlap does not significantly impact the static grit density allowing for the simpler, faster analytic model to be utilized without sacrificing accuracy.

1973 ◽  
Vol 95 (4) ◽  
pp. 979-982 ◽  
Author(s):  
S. J. Deutsch ◽  
S. M. Wu

Autoregressive models are developed for eight wheels differing in grit size, hardness, and structure. Using the parameters as responses of a factorially designed experiment, the relative contribution of the wheel constituents to the total wheel topography is related and quantified. Utilizing the effects observed, the individual and interactive roles of the wheel constituents are discussed. From the experimental observations a formation mechanism is suggested.


2019 ◽  
Vol 109 (07-08) ◽  
pp. 582-588
Author(s):  
E. Uhlmann ◽  
A. Muthulingam

Einen wesentlichen Bestandteil der Schleiftechnik ist der Konditionierprozess zur Herstellung der Schleifscheibenform und -schnittigkeit. Durch das Schärfen wird die Bindung zurückgesetzt und der notwendige Schleifkornüberstand und Spanraum geschaffen. Ein CNC-gesteuerter Schärfprozess kann zur prozesssicheren und ressourceneffizienten Einstellung der gewünschten Schleifbelagstopographie genutzt werden. Umfangreiche Schärfuntersuchungen sollen hierbei Aufschluss über die Wirkzusammenhänge zwischen Schärfeinstellgrößen und Schärfergebnis geben.   An essential part of grinding technology is the conditioning process for the generation of the grinding wheel shape and of a sharp topography. Through the sharpening process the required cutting grains are exposed from the bond and sufficient chip space is ensured by putting back the bonding. A CNC-controlled sharpening process can lead to an improvement in process reliability and the economic efficiency. Extensive experimental investigations were carried out to determine the relationship between the sharpening parameters and the sharpening result.


2016 ◽  
Vol 106 (01-02) ◽  
pp. 44-50
Author(s):  
T. Lierse ◽  
B. Karpuschewski ◽  
T. R. Kaul

Dieser Beitrag zeigt, dass die durch die Abrichtparameter erzeugte Schleifscheibentopographie nicht nur die Oberflächengüte des Werkstücks, sondern auch dessen Eigenspannungszustand in der Werkstückrandzone in weiten Grenzen verändert. Die Untersuchungen zum Abrichten von Korundschleifscheiben mit einer CVD-Diamantformrolle stellen den Zusammenhang zwischen dem Abrichten unterschiedlicher Schleifscheiben zur Bauteilqualität in Form der Oberflächenrautiefe und randzonennahen Eigenspannungen her.   The quality of the workpiece rim is changed by every grinding process. The grinding wheel topography created by the dressing process has not only influence on the workpiece roughness but also on the surface integrity. The pointed research using aluminum oxide abrasive wheels dressed by CVD diamond dressing discs shows a correlation between the dressing parameters, the workpiece roughness and the surface integrity.


2001 ◽  
Vol 28 (6) ◽  
pp. 1041-1045
Author(s):  
Mario Lefebvre

First a stochastic model is found for the maximal flow of the Mistassibi river, in Québec, during each of the months of April, May, and June, as well as for the maximal flow during the 3-month period. Next, the problem of forecasting the maximal flow in May, based on the maximal flow in April, is considered.Key words: stochastic modeling, hydrological forecast, Gaussian distribution, lognormal distributrion, linear regression, correlation, peak criterion.


2018 ◽  
Vol 108 (06) ◽  
pp. 441-447
Author(s):  
S. Barth ◽  
J. Röttger ◽  
D. Trauth ◽  
P. Mattfeld ◽  
T. Bergs ◽  
...  

In der Schleiftechnik besteht ein erhebliches Wissensdefizit über den Einfluss der Schleifscheibentopographie auf das Schleifprozessverhalten und die Ausbildung der Bauteilrandzoneneigenschaften. Ziel der Untersuchungen war daher die Identifikation und Analyse quantitativer Kenngrößen zur Beschreibung der geometrischen Schleifscheibentopographieeigenschaften. Diese Kenngrößen ermöglichten fortführend die Modellierung des thermo-mechanischen Belastungskollektivs im Schleifprozess in Abhängigkeit von der Schleifscheibentopographie.   In grinding technology, there is a considerable lack of knowledge about the influence of the grinding wheel topography on the process behaviour and the formation of the component surface zone properties. Therefore, the aim of the investigations was to investigate quantitative parameters for the description of the geometrical topography properties. These parameters enable to model the thermo-mechanical load collective in the grinding process as a function of the grinding wheel topography.


Author(s):  
Abdalslam Darafon ◽  
Andrew Warkentin ◽  
Robert Bauer

This paper presents a new empirical model of the dressing process in grinding which is then incorporated into a 3D metal removal computer simulator to numerically predict the ground surface of a workpiece as well as the dressed surface of the grinding wheel. The proposed model superimposes a ductile cutting dressing model with a grain fracture model to numerically generate the resulting grinding wheel topography and workpiece surface. Grinding experiments were carried out using “fine”, “medium” and “coarse” dressing conditions to validate both the predicted wheel topography as well as the workpiece surface finish. For the grinding conditions used in this research, it was observed that the proposed dressing model is able to accurately predict the resulting workpiece surface finish for all dressing conditions tested. Furthermore, similar trends were observed between the predicted and experimentally-measured grinding wheel topographies when plotting the cutting edge density, average cutting edge width and average cutting edge spacing as a function of depth for all dressing conditions tested.


Sign in / Sign up

Export Citation Format

Share Document