Numerical Analysis of Vortex Dynamics in a Double Expansion

2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Allan I. J. Love ◽  
Donald Giddings ◽  
Henry Power

The turbulent flow through a 3D diffuser featuring a double expansion is investigated using computational fluid dynamics. Time dependent simulations are reported using the stress omega Reynolds stress model available in ANSYS FLUENT 13.0. The flow topography and characteristics over a range of Reynolds numbers from 42,000 to 170,000 is reported, and its features are consistent with those investigated for other similar geometries. A transition from a chaotic separated flow to one featuring one large recirculation in one corner of the diffuser is predicted at a Reynolds number of 80,000. For a Reynolds number of 170,000 a precessing/flapping motion of the main flow field was identified, the frequency of which is consistent with other numerical and experimental studies.

1998 ◽  
Vol 358 ◽  
pp. 357-378 ◽  
Author(s):  
M. NAGATA

The stability of nonlinear tertiary solutions in rotating plane Couette flow is examined numerically. It is found that the tertiary flows, which bifurcate from two-dimensional streamwise vortex flows, are stable within a certain range of the rotation rate when the Reynolds number is relatively small. The stability boundary is determined by perturbations which are subharmonic in the streamwise direction. As the Reynolds number is increased, the rotation range for the stable tertiary motions is destroyed gradually by oscillatory instabilities. We expect that the tertiary flow is overtaken by time-dependent motions for large Reynolds numbers. The results are compared with the recent experimental observation by Tillmark & Alfredsson (1996).


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Jerrit Dähnert ◽  
Christoph Lyko ◽  
Dieter Peitsch

Based on detailed experimental work conducted at a low speed test facility, this paper describes the transition process in the presence of a separation bubble with low Reynolds number, low free-stream turbulence, and steady main flow conditions. A pressure distribution has been created on a long flat plate by means of a contoured wall opposite of the plate, matching the suction side of a modern low-pressure turbine aerofoil. The main flow conditions for four Reynolds numbers, based on suction surface length and nominal exit velocity, were varied from 80,000 to 300,000, which covers the typical range of flight conditions. Velocity profiles and the overall flow field were acquired in the boundary layer at several streamwise locations using hot-wire anemometry. The data given is in the form of contours for velocity, turbulence intensity, and turbulent intermittency. The results highlight the effects of Reynolds number, the mechanisms of separation, transition, and reattachment, which feature laminar separation-long bubble and laminar separation-short bubble modes. For each Reynolds number, the onset of transition, the transition length, and the general characteristics of separated flow are determined. These findings are compared to the measurement results found in the literature. Furthermore, the experimental data is compared with two categories of correlation functions also given in the literature: (1) correlations predicting the onset of transition and (2) correlations predicting the mode of separated flow transition. Moreover, it is shown that the type of instability involved corresponds to the inviscid Kelvin-Helmholtz instability mode at a dominant frequency that is in agreement with the typical ranges occurring in published studies of separated and free-shear layers.


1988 ◽  
Vol 110 (3) ◽  
pp. 289-296 ◽  
Author(s):  
F. Durst ◽  
J. C. F. Pereira

This paper presents results of numerical studies of the impulsively starting backward-facing step flow with the step being mounted in a plane, two-dimensional duct. Results are presented for Reynolds numbers of Re = 10; 368 and 648 and for the last two Reynolds numbers comparisons are given between experimental and numerical results obtained for the final steady state flow conditions. In the computational scheme, the convective terms in the momentum equations are approximated by a 13-point quadratic upstream weighted finite-difference scheme and a fully implicit first order forward differencing scheme is used to discretize the temporal derivatives. The computations show that for the higher Reynolds numbers, the flow starts to separate on the lower and upper corners of the step yielding two disconnected recirculating flow regions for some time after the flow has been impulsively started. As time progresses, these two separated flow regions connect up and a single recirculating flow region emerges. This separated flow region stays attached to the step, grows in size and approaches, for the time t → ∞, the dimensions measured and predicted for the separation region for steady laminar backward-facing flow. For the Reynolds number Re = 10 the separation starts at the bottom of the backward-facing step and the separation region enlarges with time until the steady state flow pattern is reached. At the channel wall opposite to the step and for Reynolds number Re = 368, a separated flow region is observed and it is shown to occur for some finite time period of the developing, impulsively started backward-facing step flow. Its dimensions change with time and reduce to zero before the steady state flow pattern is reached. For the higher Reynolds number Re = 648, the secondary separated flow region opposite to the wall is also present and it is shown to remain present for t → ∞. Two kinds of the inlet conditions were considered; the inlet mean flow was assumed to be constant in a first study and was assumed to increase with time in a second one. The predicted flow field for t → ∞ turned out to be identical for both cases. They were also identical to the flow field predicted for steady, backward-facing step flow using the same numerical grid as for the time-dependent predictions.


2000 ◽  
Author(s):  
Stephen E. Turner ◽  
Hongwei Sun ◽  
Mohammad Faghri ◽  
Otto J. Gregory

Abstract This paper presents an experimental investigation on nitrogen and helium flow through microchannels etched in silicon with hydraulic diameters between 10 and 40 microns, and Reynolds numbers ranging from 0.3 to 600. The objectives of this research are (1) to fabricate microchannels with uniform surface roughness and local pressure measurement; (2) to determine the friction factor within the locally fully developed region of the microchannel; and (3) to evaluate the effect of surface roughness on momentum transfer by comparison with smooth microchannels. The friction factor results are presented as the product of friction factor and Reynolds number plotted against Reynolds number. The following conclusions have been reached in the present investigation: (1) microchannels with uniform corrugated surfaces can be fabricated using standard photolithographic processes; and (2) surface features with low aspect ratios of height to width have little effect on the friction factor for laminar flow in microchannels.


Author(s):  
Jerrit Da¨hnert ◽  
Christoph Lyko ◽  
Dieter Peitsch

Based on detailed experimental work conducted at a low speed test facility, this paper describes the transition process in the presence of a separation bubble with low Reynolds number, low free-stream turbulence, and steady main flow conditions. A pressure distribution has been created on a long flat plate by means of a contoured wall opposite of the plate, matching the suction side of a modern low-pressure turbine aerofoil. The main flow conditions for four Reynolds numbers, based on suction surface length and nominal exit velocity, were varied from 80,000 to 300,000, which covers the typical range of flight conditions. Velocity profiles and the overall flow field were acquired in the boundary layer at several streamwise locations using hot-wire anemometry. The data given is in the form of contours for velocity, turbulence intensity, and turbulent intermittency. The results highlight the effects of Reynolds number, the mechanisms of separation, transition, and reattachment, which feature laminar separation-long bubble and laminar separation-short bubble modes. For each Reynolds number, the onset of transition, the transition length, and the general characteristics of separated flow are determined. These findings are compared to the measurement results found in the literature. Furthermore, the experimental data is compared with two categories of correlation functions also given in the open literature: (1) correlations predicting the onset of transition and (2) correlations predicting the mode of separated flow transition. Moreover, it is shown that the type of instability involved corresponds to the inviscid Kelvin-Helmholtz instability mode at a dominant frequency that is in agreement with the typical ranges occurring in published studies of separated and free-shear layers.


Author(s):  
Majid Nabavi ◽  
Luc Mongeau

In this study, two-dimensional laminar incompressible and turbulent compressible flow through the planar diffuser (gradual expansion) for different divergence half angles of the diffuser (θ), and different Reynolds numbers (Re) was numerically studied. The effects of θ on the critical Reynolds number at which the onset of asymmetric flow is observed, were investigated. In the laminar flow regime, it was observed that for every values of θ, there is a critical Re beyond which the flow is asymmetric. However, in the turbulent flow regime, for θ ≥ 20°, even at low Reynolds number the flow is asymmetric. Only for θ ≤ 10°, symmetric flow was observed below a critical Re.


Author(s):  
S. Yao ◽  
C. Krishnamoorthy ◽  
F. W. Chambers

The resistance of automotive air filters alters upstream pressure gradients and thereby affects flow separation, the velocity distributions over the filter, and the performance of the filter. Air filters provide a resistance sufficient to alter flows, but not enough to make face velocities uniform. The backward-facing step flow is an archetype with a separation that resembles those found in automotive air filter housings. To gain insight to the problem of separation and filters, experiments were conducted measuring velocity fields for air flows in a 10:1 aspect ratio rectangular duct with a backward-facing step with and without the resistance of an air filter mounted downstream. The expansion ratio for the step was 1:2. The filter was mounted 4.25 and 6.75 step heights downstream of the step; locations both upstream and downstream of the nominal 6 step-height no-filter reattachment point. Experiments were performed at four Reynolds numbers between 2000 and 10,000. The Reynolds numbers were based on step height and inlet maximum velocity. The inlet velocity profiles at the step were developed. A Laser Doppler Anemometer (LDA) was used to measure velocity profiles and map separated regions between the step and the filter. The results indicate that the filter tends to decrease the streamwise velocity on the non-separated side of the channel and increase it on the separated, step, side compared to the no-filter flow. Non-separated flow tends to separate due to the deceleration and separated flow reattaches before the filter, whether the filter is placed at 4.25 or 6.75 step heights. The literature shows that without a filter the reattachment location depends on the Reynolds number in the laminar and transitional regimes, but is constant for turbulent flow. However, the area of the reversed flow may vary with Reynolds number for turbulent flow. With the filter at 4.25 step heights, the area of reversing flow is reduced significantly, and the Reynolds number has little effect on the main properties of the flow. With the filter at 6.75 step heights, the reversing flow area decreases as the Reynolds number increases though the reattachment point is fixed just upstream of the filter.


1965 ◽  
Vol 87 (2) ◽  
pp. 525-529 ◽  
Author(s):  
S. Soundranayagam

The flow through two ISA nozzles of area ratio zero and 0.4 was investigated to determine the nature of the flow and its variation with Reynolds number. Separation occurs within the nozzle of zero area ratio, the size of the bubble increasing with decreasing Reynolds number. The predicted discharge coefficient based on a simplified flow model agrees with experiment for large Reynolds numbers. Upstream influences affect the performance of the nozzle of area ratio 0.4. The flows through the two nozzles are not comparable, and potential-flow results cannot be used to explain flow in venturis and nozzles in pipes. The discharge-coefficient curve for area ratio 0.4 shows a distinct hump when based on the head differential measured as for venturis, but no hump when based on the head differential across the corner taps.


Author(s):  
D. Sumner ◽  
O. O. Akosile

An experimental investigation was conducted of a circular cylinder immersed in a uniform planar shear flow, where the approach velocity varies across the diameter of the cylinder. The study was motivated by some apparent discrepancies between numerical and experimental studies of the flow, and the general lack of experimental data, particularly in the subcritical Reynolds number regime. Of interest was the direction and origin of the steady mean lift force experienced by the cylinder, which has been the subject of contradictory results in the literature, and for which measurements have rarely been reported. The circular cylinder was tested at Reynolds numbers from Re = 4.0×104 − 9.0×104, and the dimensionless shear parameter ranged from K = 0.02 − 0.07, which corresponded to a flow with low to moderate shear. The results showed that low to moderate shear has no appreciable influence on the Strouhal number, but has the effect of lowering the mean drag coefficient. The circular cylinder develops a small steady mean lift force directed towards the low-velocity side, which is attributed to an asymmetric mean static pressure distribution on its surface. The reduction in the mean drag force, however, cannot be attributed solely to this asymmetry.


Author(s):  
Ahmed Yousif

A 2-D computational analysis is carried out to calculate heat transfer and friction factor for laminar flow through a rectangular duct with using fan–shape ribs as a turbulator. The types of rib shapes are imported on the heat transfer rate and fluid flow in heat exchangers. The present study makes use of fan-shaped ribs with two arrangements. The first arrangement was downstream fan–shape ribs (case 1) and upstream fan–shape ribs (case 2) is investigated. A commercial finite volume package ANSYS FLUENT 16.1 is used for solving the meshing process with continuity, momentum, and energy equations respectively to investigate fluid flow and heat transfer across the ribs surface. The Reynolds number (Re) range of (400 – 2250) with different relative roughness pitch (p/H= 0.17, 0.22, 0.27 and 0.32) at constant rib high (e/H). The results show that the heat transfers and friction increase with using ribs also, the results show that heat transfer Directly proportional to pitch ratio and Reynolds number. The Nusselt number enhancement by (12% -29%).    


Sign in / Sign up

Export Citation Format

Share Document