Independent Suspension of Invariable Alignment Parameters by Using Flexible Links With Anisotropic Elasticity

2014 ◽  
Vol 6 (4) ◽  
Author(s):  
Jing-Shan Zhao ◽  
Jian-Yi Wang ◽  
Fulei Chu ◽  
Jian S. Dai

This paper investigates an independent suspension with invariable alignment parameters by using flexible links of anisotropic elasticity. It focuses on the synthesis of elasticity of compliant flat links and establishes the mapping from the internal forces during jounce and rebound to the perturbation of the alignment parameters of the knuckle. The equivalent substitution of a flexible link to the infinite-R kinematic chain is first discussed by investigating the free motion and constraint of planar R-type kinematic chains. The rigid guidance capability of the suspension is then discussed from the viewpoint of perturbations of alignment parameters via investigating the lateral deflections of the anisotropic flexible links. At last the rib strengthened double level links on each side of the knuckle are proposed for engineering applications. Numerical simulations and model test show that this kind of suspension can provide very good alignment for the wheel.

2015 ◽  
Vol 762 ◽  
pp. 101-106 ◽  
Author(s):  
Nadia Ramona Cretescu ◽  
Mircea Neagoe

This paper presents a comparative kinematic and dynamic analysis of a Delta parallel robot based on numerical simulations of the rigid vs. flexible links robot models. The flexible links numerical models are derived using AutoFlex module of Adams software. Finally, the conclusions regarding the obtained results useful in manipulator constructive design are presented.


2012 ◽  
Author(s):  
Dominic Piro ◽  
Kyle A. Brucker ◽  
Thomas T. O'Shea ◽  
Donald Wyatt ◽  
Douglas Dommermuth ◽  
...  

2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Krzysztof Wołosz ◽  
Jacek Wernik

AbstractThe paper presents the part of the investigation that has been carried out in order to develop the pneumatic pulsator which is to be employed as an unblocking device at lose material silo outlets. The part of numerical simulation is reported. The fluid dynamics issues have been outlined which are present during supersonic airflow thought the head of the pulsator. These issues describe the pneumatic impact phenomenon onto the loose material bed present in the silo to which walls the pulsator is assembled. The investigation presented in the paper are industrial applicable and the result is the working prototype of the industrial pneumatic pulsator. The numerical simulation has led to change the piston shape which is moving inside the head of the pulsator, and therefore, to reduce the pressure losses during the airflow. A stress analysis of the pulsator controller body has been carried out while the numerical simulation investigation part of the whole project. The analysis has made possible the change of the controller body material from cast iron to aluminium alloy.


2014 ◽  
Vol 575 ◽  
pp. 501-506 ◽  
Author(s):  
Shubhashis Sanyal ◽  
G.S. Bedi

Kinematic chains differ due to the structural differences between them. The location of links, joints and loops differ in each kinematic chain to make it unique. Two similar kinematic chains will produce similar motion properties and hence are avoided. The performance of these kinematic chains also depends on the individual topology, i.e. the placement of its entities. In the present work an attempt has been made to compare a family of kinematic chains based on its structural properties. The method is based on identifying the chains structural property by using its JOINT LOOP connectivity table. Nomenclature J - Number of joints, F - Degree of freedom of the chain, N - Number of links, L - Number of basic loops (independent loops plus one peripheral loop).


Author(s):  
M. A. Nahon ◽  
J. Angeles

Abstract Mechanical hands have become of greater interest in robotics due to the advantages they offer over conventional grippers in tasks requiring dextrous manipulation. However, mechanical hands also tend to be more complex in construction and require more sophisticated design analysis to determine the forces in the system. A mechanical hand can be described as a kinematic chain with time-varying topology which becomes redundantly actuated when an object is grasped. When this occurs, care must be exercised to avoid crushing the object or generating excessive forces within the mechanism. In the present work, this problem is formulated as a constrained quadratic optimization problem. The forces to be minimized form the objective, the dynamic equations of motion form the equality constraints and the finger-object contacts yield the inequality constraints. The quadratic-programming approach is shown to be advantageous due to its ability to minimize ‘internal forces’ A technique is proposed for smoothing the discontinuities in the force solution which occur when the toplogy changes.


Author(s):  
Martín A. Pucheta ◽  
Nicolás E. Ulrich ◽  
Alberto Cardona

The graph layout problem arises frequently in the conceptual stage of mechanism design, specially in the enumeration process where a large number of topological solutions must be analyzed. Two main objectives of graph layout are the avoidance or minimization of edge crossings and the aesthetics. Edge crossings cannot be always avoided by force-directed algorithms since they reach a minimum of the energy in dependence with the initial position of the vertices, often randomly generated. Combinatorial algorithms based on the properties of the graph representation of the kinematic chain can be used to find an adequate initial position of the vertices with minimal edge crossings. To select an initial layout, the minimal independent loops of the graph can be drawn as circles followed by arcs, in all forms. The computational cost of this algorithm grows as factorial with the number of independent loops. This paper presents a combination of two algorithms: a combinatorial algorithm followed by a force-directed algorithm based on spring repulsion and electrical attraction, including a new concept of vertex-to-edge repulsion to improve aesthetics and minimize crossings. Atlases of graphs of complex kinematic chains are used to validate the results. The layouts obtained have good quality in terms of minimization of edge crossings and maximization of aesthetic characteristics.


Author(s):  
Jieyu Wang ◽  
Xianwen Kong

A novel construction method is proposed to construct multimode deployable polyhedron mechanisms (DPMs) using symmetric spatial RRR compositional units, a serial kinematic chain in which the axes of the first and the third revolute (R) joints are perpendicular to the axis of the second R joint. Single-loop deployable linkages are first constructed using RRR units and are further assembled into polyhedron mechanisms by connecting single-loop kinematic chains using RRR units. The proposed mechanisms are over-constrained and can be deployed through two approaches. The prism mechanism constructed using two Bricard linkages and six RRR limbs has one degree-of-freedom (DOF). When removing three of the RRR limbs, the mechanism obtains one additional 1-DOF motion mode. The DPMs based on 8R and 10R linkages also have multiple modes, and several mechanisms are variable-DOF mechanisms. The DPMs can switch among different motion modes through transition positions. Prototypes are 3D-printed to verify the feasibility of the mechanisms.


Robotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Fernando Gonçalves ◽  
Tiago Ribeiro ◽  
António Fernando Ribeiro ◽  
Gil Lopes ◽  
Paulo Flores

Forward kinematics is one of the main research fields in robotics, where the goal is to obtain the position of a robot’s end-effector from its joint parameters. This work presents a method for achieving this using a recursive algorithm that builds a 3D computational model from the configuration of a robotic system. The orientation of the robot’s links is determined from the joint angles using Euler Angles and rotation matrices. Kinematic links are modeled sequentially, the properties of each link are defined by its geometry, the geometry of its predecessor in the kinematic chain, and the configuration of the joint between them. This makes this method ideal for tackling serial kinematic chains. The proposed method is advantageous due to its theoretical increase in computational efficiency, ease of implementation, and simple interpretation of the geometric operations. This method is tested and validated by modeling a human-inspired robotic mobile manipulator (CHARMIE) in Python.


2021 ◽  
Vol 12 (2) ◽  
pp. 1061-1071
Author(s):  
Jinxi Chen ◽  
Jiejin Ding ◽  
Weiwei Hong ◽  
Rongjiang Cui

Abstract. A plane kinematic chain inversion refers to a plane kinematic chain with one link fixed (assigned as the ground link). In the creative design of mechanisms, it is important to select proper ground links. The structural synthesis of plane kinematic chain inversions is helpful for improving the efficiency of mechanism design. However, the existing structural synthesis methods involve isomorphism detection, which is cumbersome. This paper proposes a simple and efficient structural synthesis method for plane kinematic chain inversions without detecting isomorphism. The fifth power of the adjacency matrix is applied to recognize similar vertices, and non-isomorphic kinematic chain inversions are directly derived according to non-similar vertices. This method is used to automatically synthesize 6-link 1-degree-of-freedom (DOF), 8-link 1-DOF, 8-link 3-DOF, 9-link 2-DOF, 9-link 4-DOF, 10-link 1-DOF, 10-link 3-DOF and 10-link 5-DOF plane kinematic chain inversions. All the synthesis results are consistent with those reported in literature. Our method is also suitable for other kinds of kinematic chains.


Author(s):  
Yufeng Luo ◽  
Tingli Yang ◽  
Ali Seireg

Abstract A systematic procedure is presented for the structure type synthesis of multiloop spatial kinematic chains with general variable constraints in this paper. The parameters and the structure types of the contracted graphs and the branch chains used to synthesize such kinematic chains are given for kinematic chains with up to four independent loops. The assignments for the constraints values of all the loops in a kinematic chain are discussed. Using these as the basis, the structure types of the multiloop spatial kinematic chains with hybrid constraints could be synthesized.


Sign in / Sign up

Export Citation Format

Share Document