Calculation of Flow Instability Inception in High Speed Axial Compressors Based on an Eigenvalue Theory

2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Xiaohua Liu ◽  
Yanpei Zhou ◽  
Xiaofeng Sun ◽  
Dakun Sun

This paper applies a theoretical model developed recently to calculate the flow instability inception point in axial high speed compressors system with tip clearance. After the mean flow field is computed by 3D steady computational fluid dynamics (CFD) simulation, a body force approach, which is a function of flow field data and comprises of one inviscid part and the other viscid part, is taken to duplicate the physical sources of flow turning and loss. Further by applying appropriate boundary conditions and spectral collocation method, a group of homogeneous equations will yield from which the stability equation can be derived. The singular value decomposition (SVD) method is adopted over a series of fine grid points in frequency domain, and the onset point of flow instability can be judged by the imaginary part of the resultant eigenvalue. The first assessment is to check the applicability of the present model on calculating the stall margin of one single stage transonic compressors at 85% rotational speed. The reasonable prediction accuracy validates that this model can provide an unambiguous judgment on stall inception without numerous requirements of empirical relations of loss and deviation angle. It could possibly be employed to check overcomputed stall margin during the design phase of new high speed compressors. The following validation case is conducted to study the nontrivial role of tip clearance in rotating stall, and a parameter study is performed to investigate the effects of end wall body force coefficient on stall onset point calculation. It is verified that the present model could qualitatively predict the reduced stall margin by assuming a simplified body force model which represents the response of a large tip clearance on the unsteady flow field.

Author(s):  
Xiaohua Liu ◽  
Yanpei Zhou ◽  
Xiaofeng Sun ◽  
Dakun Sun

This paper applies a theoretical model developed recently to calculate the flow instability inception point in axial high speed compressors system. After the mean flow field is computed by steady CFD simulation, a body force approach, which is a function of flow field data and comprises of one inviscid part and the other viscid part, is taken to duplicate the physical sources of flow turning and loss. Further by applying appropriate boundary conditions and spectral collocation method, a group of homogeneous equations will yield from which the stability equation can be derived. The singular value decomposition method is adopted over a series of fine grid points in frequency domain, and the onset point of flow instability can be judged by the imaginary part of the resultant eigenvalue. The first assessment is to check the applicability of the present model on calculating the stall margin of one single stage transonic compressors at 85% rotational speed. The reasonable prediction accuracy validates that this model can provide an unambiguous judgment on stall inception without numerous requirements of empirical relations of loss and deviation angle. It could possibly be employed to check over-computed stall margin during the design phase of new high speed fan/compressors. The following validation case is conducted to study the nontrivial role of tip clearance in rotating stall, and a parameter study is performed to investigate the effects of end wall body force coefficient on stall onset point calculation. It is verified that the present model could qualitatively predict the reduced stall margin by assuming a simplified body force model which represents the response of a large tip clearance on the unsteady flow field.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Xiaohua Liu ◽  
Jinfang Teng ◽  
Jun Yang ◽  
Xiaofeng Sun ◽  
Dakun Sun ◽  
...  

Although steady micro-injection is experimentally validated as an attractive method in improving the stall margin of axial compressors, up to now a fast prediction of stall boundary remains some way off. This investigation is to propose such a prediction model. A flow stability model is developed to further consider the effect of high-speed micro-injection. After the base flow field is calculated by steady computational fluid dynamics simulation, a body force model is applied to reproduce the effect of blade on the flow turning and loss. A group of homogeneous equations are obtained based on linearized Navier–Stokes equations and harmonic decomposition of small flow disturbance. The stall onset point can be judged by the imaginary part of the resultant eigenvalue. After the existing experimental results are summarized, an unsteady numerical simulation reveals that the computed characteristics and radial profile of pressure rise coefficient are almost unchanged. The unsteady response of compressor to the micro-injection is preliminarily verified based on the observation of the disturbed spillage of tip leakage flow. It is verified that this approach can provide a qualitative assessment of stall point with acceptable computational cost. Both high injection velocity and short axial gap between injector and rotor leading edge are beneficial for the stall margin extension. These theoretical findings agree well with experimental measurements. It is inferred that the spillage of tip clearance flow, which is inward pushed by higher speed injection with shortened distance away from rotor, could lead to further stable flow field.


Author(s):  
Xiaofeng Sun ◽  
Xiaohua Liu ◽  
Dakun Sun

This paper applies a theoretical model, which has been developed recently, to calculate the flow instability inception of axial transonic fan/compressors system. After the mean flow field is computed by steady CFD simulation, a body force approach, which is a function of flow field data, is taken to represent the effects of discrete blades on the flow field and duplicate the physical sources of flow turning and loss. Further by applying appropriate boundary conditions and spectral collocation method, a group of homogeneous equations will yield from which the stability equation can be derived. The singular value decomposition method is adopted over a series of fine grids in frequency domain to solve the resultant eigenvalue problem, and the onset point of flow instability can be judged by the imaginary part of the resultant eigenvalue. The present investigation is to validate the feasibility of calculating the stall onset point for single stage transonic compressor. It is shown that this model is capable of predicting instability inception point of transonic flow with reasonable accuracy, and it is sustainable in terms of computational cost for industrial application. It is shown that this model can provide an unambiguous judgment on stall inception without numerous requirements of empirical relations of loss and deviation angle. It provides a possibility to check over-predicted stall margin during the design phase of new high speed fan/compressors. In addition, the effect of flow compressibility on the stall onset point calculation for transonic rotor is studied.


Author(s):  
ZX Liu ◽  
HZ Diao ◽  
XC Zhu ◽  
ZH Du

In this paper, a three-dimensional body force model for predicting compressor performance and stability is implemented in the Ansys CFX. The influence of the blade rows on the flow field is represented by the source terms of CFX-solver equation. At first, a high-speed and high-pressure-ratio transonic compressor with the clean inlet is investigated. The overall performance and the flow fields are in agreement well with those of the experimental date, so the model is reliable and correct. Then, the effects of the circumferential distortions in the inlet total pressure and the total temperature on the compressor performance and flow field are also illustrated, respectively. In summary, the proposed body force model is suitable to investigate the flow field of the compressor with the inlet distortions.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jin Guo ◽  
Jun Hu ◽  
Baofeng Tu

AbstractThis paper applies a body force model developed recently to investigate the interaction between total temperature distortion and a multistage fan. The off-design performance of the fan shows the reasonable predicting accuracy and supports the present model is applicable for high-speed multistage machines. The transfer behaviors of 90° steady-state circumferential total temperature distortion as well as combined total pressure and total temperature distortion in the multistage environment are captured successfully by the model. The mechanism of the phase shift of the high temperature sector is discussed by the model to advance the understanding of the total temperature distortion problem. The results reveal that the large-scale flow feature of total temperature distortion in the multistage environment can be capably quantified by the present body force model with the acceptable computational consumption.


Author(s):  
HaoGuang Zhang ◽  
Kang An ◽  
Feng Tan ◽  
YanHui Wu ◽  
WuLi Chu

The compressor aerodynamic design is conducted under the condition of clean inlet in general, but a compressor often operates under the condition of inlet distortion in the practical application. It has been proven by a lot of experimental and numerical investigations that inlet distortion can decrease the performance and stability of compressors. The circumferential or radial distorted inlet in mostly numerical investigations is made by changing the total pressure and total temperature in the inlet ring surface of the compressors. In most of inlet distortion experiments, distorted inlets are usually created by using wire net, flashboards, barriers or the generator of rotating distortion. The fashion of generating distorted inlet for experiment is different from that for numerical simulation. Consequently, the flow mechanism of affecting the flow field and stability of a compressor with distorted inlet for experiment is partly different than that for numerical simulation. In the numerical work reported here, the inlet distortion is generated by setting some barriers in the inlet ring surface of an axial subsonic compressor rotor. Two kinds of distorted inlet are investigated to exploring the effect of distorted range on the flow field and stability of the compressor with ten-passage unsteady numerical method. The numerical results show that the inlet distortions not only degrade the total pressure and efficiency of the compressor rotor, but also decrease the stability of the rotor. The larger the range of distorted inlet is, the stronger the adverse effect is. The comprehensive stall margin for the inlet distortion of 24 degrees and 48 degrees of ten-passages is reduced about 3.35% and 5.88% respectively. The detailed analysis of the flow field in the compressor indicates that the blockage resulted from tip clearance leakage vortex (TLV) and the flow separation near the suction surfaces of some blades tip for distorted inlet is more serious than that resulted from TLV for clean inlet. Moreover, the larger the range of distorted inlet is, the larger the range of the blockage is. The analysis of unsteady flow shows that during this process, which is that one rotor blade passes through the region affected by the distorted inlet, the range of the blockage in the rotor passage increases first, then reduces, and increases last.


Author(s):  
Yan Ma ◽  
Guang Xi ◽  
Guangkuan Wu

The present paper describes an investigation of stall margin enhancement and a detailed analysis of the impeller flow field due to self-recirculation casing treatment (SRCT) configuration of a high-speed small-size centrifugal impeller. The influence of different SRCT configurations on the impeller flow field at near-stall condition has been analyzed, highlighting the improvement in stall flow ability. This paper also discusses the influence of the SRCT configurations on the inlet flow angle, inlet swirl velocity and loss distribution in the impeller passage to understand the mechanism of the SRCT configurations in enhancing the stall margin of the impeller. The variation of the bleed flow rate at different operating conditions is also presented in this paper. Finally, the time-averaged unsteady simulation results at near-stall point are presented and compared with steady-state solutions.


Author(s):  
Hao G Zhang ◽  
Fei Y Dong ◽  
Wei Wang ◽  
Wu L Chu ◽  
Song Yan

This investigation aims to understand the mechanisms of affecting the axial flow compressor performance and internal flow field with the application of self-recirculation casing treatment. Besides, the potentiality of further enhancing the compressor performance and stability by optimizing the geometric structure of self-recirculation casing treatment is discussed in detail. The results show that self-recirculation casing treatment generates about 7.06, 7.89% stall margin improvements in the experiment and full-annulus unsteady calculation, respectively. Moreover, the compressor total pressure and isentropic efficiency are improved among most of operating points, and the experimental and calculated compressor peak efficiencies are increased by 0.7% and 0.6%, respectively. The comparisons between baseline shroud and self-recirculation casing treatment show that the flow conditions of the compressor rotor inlet upstream are improved well with self-recirculation casing treatment, and the degree of the pressure enhancement in the blade top passage for self-recirculation casing treatment is higher than that for baseline. Further, self-recirculation casing treatment can restrain the leading edge-spilled flows made by the blade tip clearance leakage flows and weaken the blade tip passage blockage. Hence, the flow loss near the rotor top passage is reduced after the application of self-recirculation casing treatment. The rotor performance and stability for self-recirculation casing treatment are greater than those for baseline. The flow-field analyses also indicate that the adverse effects caused by the clearance leakage flows of the blades tip rear are greater than those made by the clearance leakage flows of the blades leading edge. When one injecting part of self-recirculation casing treatment is aligned with the inlet of one blade tip passage, the flow-field quality in the passage is not the best among all the passages between two adjacent injecting parts of self-recirculation casing treatment. Further, the flow-field analyses also indicate that the effect of the relative position between the blade and self-recirculation casing treatment on the flows in the self-recirculation casing treatment may be ignored during the optimization of the recirculating loop configuration.


2014 ◽  
Vol 136 (1) ◽  
Author(s):  
Vaibhav K. Arghode ◽  
Yogendra Joshi

Cold aisle containment is used in air cooled data centers to minimize direct mixing between cold and hot air. Here, we present room level air flow field investigation for open, partially and fully contained cold aisles. Our previous investigation for rack level modeling has shown that consideration of momentum rise above the tile surface, due to acceleration of air through the pores, significantly improves the predictive capability as compared to the generally used porous jump model. The porous jump model only specifies a step pressure loss at the tile surface without any influence on the flow field. The momentum rise could be included by either directly resolving the tile's pore structure or by artificially specifying a momentum source above the tile surface. In the present work, a modified body force model is used to artificially specify the momentum rise above the tile surface. The modified body force model was validated against the experimental data as well as with the model resolving the tile pore geometry at the rack level and then implemented at the room level. With the modified body force model, much higher hot air entrainment and higher server inlet temperatures were predicted as compared to the porous jump model. Even when the rack air flow requirement is matched with the tile air flow supply, considerable hot air recirculation is predicted. With partial containment, where only a curtain at the top of the cold aisle is deployed and side doors are opened, improved cold air delivery is suggested.


Author(s):  
Xinqian Zheng ◽  
Anxiong Liu ◽  
Zhenzhong Sun

The stable-flow range of a compressor is predominantly limited by surge and stall. In this paper, an unsteady simulation method was employed to investigate the instability mechanisms of a high-speed turbocharger centrifugal compressor with a vaneless diffuser. In comparison with the variation in the pressure obtained by dynamic experiments on the same compressor, unsteady simulations show a great accuracy in representing the stall behaviour. The predicted frequency of the rotating stall is 22.5% of the rotor frequency, which agrees with to the value for the high-frequency short-term rotating stall obtained experimentally. By investigating the instability of the flow field, it is found that the unstable flow of the turbocharger compressor at high rotational speeds is caused by the tip clearance leakage flow and the ‘backflow vortices’ originating from the interaction of the incoming flow and the backflow in the tip region of the passages. The asymmetric volute helps to induce the occurrence of stall in certain impeller passages because it generates an asymmetric flow field. The high-pressure low-velocity area from the 180° circumferential position to the 270° circumferential position is dominant and strengthens the backflow at the trailing edge of the impeller, finally triggering the stall.


Sign in / Sign up

Export Citation Format

Share Document