A Batchelor Vortex Model for Mean Velocity of Turbulent Swirling Flow in a Macroscale Multi-Inlet Vortex Reactor

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Zhenping Liu ◽  
Rodney O. Fox ◽  
James C. Hill ◽  
Michael G. Olsen

The velocity field in a macroscale multi-inlet vortex reactor (MIVR) used in “flash nanoprecipitation (FNP)” process for producing functional nanoparticles was investigated using stereoscopic particle image velocimetry (SPIV). Based on the experimental data, a simple model was proposed to describe the average velocity field within the reactor. In the model, the axial and azimuthal velocities could be well described by the combination of two coflowing Batchelor vortices. In this model, six dimensionless coefficients are identified by nonlinear curve fitting, and their dependence on Reynolds number can be linearly described. This simple model is able to accurately predict the mean velocity field within the confined turbulent swirling flow based purely on Reynolds number.

Author(s):  
Zhenping Liu ◽  
James C. Hill ◽  
Rodney O. Fox ◽  
Michael G. Olsen

Flash Nanoprecipitation (FNP) is a technique to produce monodisperse functional nanoparticles through rapidly mixing a saturated solution and a non-solvent. Multi-inlet vortex reactors (MIVR) have been effectively applied to FNP due to their ability to provide both rapid mixing and the flexibility of inlet flow conditions. Until recently, only micro-scale MIVRs have been demonstrated to be effective in FNP. A scaled-up MIVR could potentially generate large quantities of functional nanoparticles, giving FNP wider applicability in the industry. In the present research, turbulent mixing inside a scaled-up, macro-scale MIVR was measured by stereoscopic particle image velocimetry (SPIV). Reynolds number of this reactor is defined based on the bulk inlet velocity, ranging from 3290 to 8225. It is the first time that the three-dimensional velocity field of a MIVR was experimentally measured. The influence of Reynolds number on mean velocity becomes more linear as Reynolds number increases. An analytical vortex model was proposed to well describe the mean velocity profile. The turbulent characteristics such as turbulent kinematic energy and Reynolds stress are also presented. The wandering motion of vortex center was found to have a significant contribution to the turbulent kinetic energy of flow near the center area.


2018 ◽  
Vol 857 ◽  
pp. 345-373 ◽  
Author(s):  
Davide Gatti ◽  
Andrea Cimarelli ◽  
Yosuke Hasegawa ◽  
Bettina Frohnapfel ◽  
Maurizio Quadrio

This paper addresses the integral energy fluxes in natural and controlled turbulent channel flows, where active skin-friction drag reduction techniques allow a more efficient use of the available power. We study whether the increased efficiency shows any general trend in how energy is dissipated by the mean velocity field (mean dissipation) and by the fluctuating velocity field (turbulent dissipation). Direct numerical simulations (DNS) of different control strategies are performed at constant power input (CPI), so that at statistical equilibrium, each flow (either uncontrolled or controlled by different means) has the same power input, hence the same global energy flux and, by definition, the same total energy dissipation rate. The simulations reveal that changes in mean and turbulent energy dissipation rates can be of either sign in a successfully controlled flow. A quantitative description of these changes is made possible by a new decomposition of the total dissipation, stemming from an extended Reynolds decomposition, where the mean velocity is split into a laminar component and a deviation from it. Thanks to the analytical expressions of the laminar quantities, exact relationships are derived that link the achieved flow rate increase and all energy fluxes in the flow system with two wall-normal integrals of the Reynolds shear stress and the Reynolds number. The dependence of the energy fluxes on the Reynolds number is elucidated with a simple model in which the control-dependent changes of the Reynolds shear stress are accounted for via a modification of the mean velocity profile. The physical meaning of the energy fluxes stemming from the new decomposition unveils their inter-relations and connection to flow control, so that a clear target for flow control can be identified.


2007 ◽  
Vol 580 ◽  
pp. 319-338 ◽  
Author(s):  
SCOTT C. MORRIS ◽  
SCOTT R. STOLPA ◽  
PAUL E. SLABOCH ◽  
JOSEPH C. KLEWICKI

The Reynolds number dependence of the structure and statistics of wall-layer turbulence remains an open topic of research. This issue is considered in the present work using two-component planar particle image velocimetry (PIV) measurements acquired at the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility in western Utah. The Reynolds number (δuτ/ν) was of the order 106. The surface was flat with an equivalent sand grain roughness k+ = 18. The domain of the measurements was 500 < yuτ/ν < 3000 in viscous units, 0.00081 < y/δ < 0.005 in outer units, with a streamwise extent of 6000ν/uτ. The mean velocity was fitted by a logarithmic equation with a von Kármán constant of 0.41. The profile of u′v′ indicated that the entire measurement domain was within a region of essentially constant stress, from which the wall shear velocity was estimated. The stochastic measurements discussed include mean and RMS profiles as well as two-point velocity correlations. Examination of the instantaneous vector maps indicated that approximately 60% of the realizations could be characterized as having a nearly uniform velocity. The remaining 40% of the images indicated two regions of nearly uniform momentum separated by a thin region of high shear. This shear layer was typically found to be inclined to the mean flow, with an average positive angle of 14.9°.


Author(s):  
Qiong Wu ◽  
Qian Ye ◽  
GuoXiang Meng

In this article, particle image velocimetry was used to measure the two-dimensional flow field for vortex gripper. The vortex gripper was divided into two parts for respective research, including vortex cup and the gas film gap. In the part of vortex cup, the tangential velocity increases gradually, and the velocity decreases intensely in the vicinity of the vortex cup’s wall after it reaches maximum. In addition, the velocity decreases gradually with the increase of the gas film gap. In the part of gas film gap, the tangential velocity increases to maximum along the radial direction first; after the air flows into the gas film gap due to the viscous impedance, it decreases gradually. When the gas film gap’s thickness is smaller, the velocity almost decreases to zero at the external edge of the skirt. However, when the gas film gap increases to a certain thickness, the velocity does not decrease to zero, and the flow air still keeps a certain speed out of it. The velocity decreases gradually with the increase of the gas film gap. The radial velocity in the vortex cup and the gas film gap is of very small order of magnitude comparing with the average velocity and tangential velocity. The analysis of the Reynolds number shows that the flow in the vortex cup is the turbulent flow, and at the part of the gas film gap, the Reynolds number increases with the increase of the gas film gap, and the flow changes from the laminar flow to the turbulent flow. Through the particle image velocimetry experiment, the vortex gripper’s internal flow structure is studied. It is the theory support of the computational fluid dynamics simulation study for vortex gripper and the structure optimization in the future work.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
G. F. K. Tay ◽  
D. C. S. Kuhn ◽  
M. F. Tachie

This paper reports an experimental investigation of the effects of wall roughness and favorable pressure gradient on low Reynolds number turbulent flow in a two-dimensional asymmetric converging channel. Flow convergence was produced by means of ramps (of angles 2 deg and 3 deg) installed on the bottom wall of a plane channel. The experiments were conducted over a smooth surface and over transitionally rough and fully rough surfaces produced from sand grains and gravel of nominal mean diameters 1.55 mm and 4.22 mm, respectively. The dimensionless acceleration parameter was varied from 0.38×10−6 to 3.93×10−6 while the Reynolds number based on the boundary layer momentum thickness was varied from 290 to 2250. The velocity measurements were made using a particle image velocimetry technique. From these measurements, the distributions of the mean velocity and Reynolds stresses were obtained to document the salient features of transitionally and fully rough low Reynolds number turbulent boundary layers subjected to favorable pressure gradient.


2013 ◽  
Vol 10 (82) ◽  
pp. 20121031 ◽  
Author(s):  
Takanobu Yagi ◽  
Ayaka Sato ◽  
Manabu Shinke ◽  
Sara Takahashi ◽  
Yasutaka Tobe ◽  
...  

This study experimentally investigated the instability of flow impingement in a cerebral aneurysm, which was speculated to promote the degradation of aneurysmal wall. A patient-specific, full-scale and elastic-wall replica of cerebral artery was fabricated from transparent silicone rubber. The geometry of the aneurysm corresponded to that found at 9 days before rupture. The flow in a replica was analysed by quantitative flow visualization (stereoscopic particle image velocimetry) in a three-dimensional, high-resolution and time-resolved manner. The mid-systolic and late-diastolic flows with a Reynolds number of 450 and 230 were compared. The temporal and spatial variations of near-wall velocity at flow impingement delineated its inherent instability at a low Reynolds number. Wall shear stress (WSS) at that site exhibited a combination of temporal fluctuation and spatial divergence. The frequency range of fluctuation was found to exceed significantly that of the heart rate. The high-frequency-fluctuating WSS appeared only during mid-systole and disappeared during late diastole. These results suggested that the flow impingement induced a transition from a laminar regime. This study demonstrated that the hydrodynamic instability of shear layer could not be neglected even at a low Reynolds number. No assumption was found to justify treating the aneurysmal haemodynamics as a fully viscous laminar flow.


Author(s):  
Tamara Guimarães ◽  
K. Todd Lowe ◽  
Walter F. O'Brien

The future of aviation relies on the integration of airframe and propulsion systems to improve aerodynamic performance and efficiency of aircraft, bringing design challenges, such as the ingestion of nonuniform flows by turbofan engines. In this work, we describe the behavior of a complex distorted inflow in a full-scale engine rig. The distortion, as in engines on a hybrid wing body (HWB) type of aircraft, is generated by a 21-in diameter StreamVane, an array of vanes that produce prescribed secondary flow distributions. Data are acquired using stereoscopic particle image velocimetry (PIV) at three measurement planes along the inlet of the research engine (Reynolds number of 2.4 × 106). A vortex dynamics-based model, named StreamFlow, is used to predict the mean secondary flow development based on the experimental data. The mean velocity profiles show that, as flow develops axially, the vortex present in the profile migrates clockwise, opposite to the rotation of the fan, and toward the spinner of the engine. The turbulent stresses indicate that the center of the vortex meanders around a preferred location, which tightens as flow gets closer to the fan, yielding a smaller radius mean vortex near the fan. Signature features of the distortion device are observed in the velocity gradients, showing the wakes generated by the distortion screen vanes in the flow. The results obtained shed light onto the aerodynamics of swirling flows representative of distorted turbofan inlets, while further advancing the understanding of the complex vane technology presented herein for advanced ground testing.


2019 ◽  
Vol 213 ◽  
pp. 02088
Author(s):  
Václav Uruba ◽  
Pavel Procházka ◽  
Vladislav Skála

The structure of boundary layer on an airfoil suction side was studied using stereo time resolved PIV technique experimentally in low Reynolds number, about 33 thousands. The mean velocity field is close to the 2D case, however the instantaneous structure is highly dynamical and 3D. Dynamics of the vortices in the boundary layer has been analysed using POD method. The results show lag of coherence in the streamwise direction, oblique patterns are detected instead.


2010 ◽  
Vol 654 ◽  
pp. 473-500 ◽  
Author(s):  
Ö. ERTUNÇ ◽  
N. ÖZYILMAZ ◽  
H. LIENHART ◽  
F. DURST ◽  
K. BERONOV

Homogeneity of turbulence generated by static grids is investigated with the help of hot-wire measurements in a wind-tunnel and direct numerical simulations based on the Lattice Bolztmann method. It is shown experimentally that Reynolds stresses and their anisotropy do not become homogeneous downstream of the grid, independent of the mesh Reynolds number for a grid porosity of 64%, which is higher than the lowest porosities suggested in the literature to realize homogeneous turbulence downstream of the grid. In order to validate the experimental observations and elucidate possible reasons for the inhomogeneity, direct numerical simulations have been performed over a wide range of grid porosity at a constant mesh Reynolds number. It is found from the simulations that the turbulence wake behind the symmetric grids is only homogeneous in its mean velocity but is inhomogeneous when turbulence quantities are considered, whereas the mean velocity field becomes inhomogeneous in the wake of a slightly non-uniform grid. The simulations are further analysed by evaluating the terms in the transport equation of the kinetic energy of turbulence to provide an explanation for the persistence of the inhomogeneity of Reynolds stresses far downstream of the grid. It is shown that the early homogenization of the mean velocity field hinders the homogenization of the turbulence field.


Sign in / Sign up

Export Citation Format

Share Document