Aerodynamic Interference Effect of Huge Wind Turbine Blades With Periodic Surge Motions Using Overset Grid-Based Computational Fluid Dynamics Approach

2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Thanh Toan Tran ◽  
Dong-Hyun Kim ◽  
Ba Hieu Nguyen

The accurate prediction of unsteady aerodynamic performance and loads, for floating offshore wind turbines (FOWTs), is still questionable because several conventional methods widely used for this purpose are applied in ways that violate the theoretical assumptions of their original formulation. The major objective of the present study is to investigate the unsteady aerodynamic effects for the rotating blade due to the periodic surge motions of an FOWT. This work was conducted using several numerical approaches, particularly unsteady computational fluid dynamics (CFD) with an overset grid-based approach. The unsteady aerodynamic effects that occur when an FOWT is subjected to the surge motion of its floating support platform is assumed as a sinusoidal function. The present CFD simulation based on an overset grid approach provides a sophisticated numerical model on complex flows around the rotating blades simultaneously having the platform surge motion. In addition, an in-house unsteady blade element momentum (UBEM) and the fast (fatigue, aerodynamic, structure, and turbulence) codes are also applied as conventional approaches. The unsteady aerodynamic performances and loads of the rotating blade are shown to be changed considerably depending on the amplitude and frequency of the platform surge motion. The results for the flow interaction phenomena between the oscillating motions of the rotating wind turbine blades and the generated blade-tip vortices are presented and investigated in detail.

2018 ◽  
Vol 207 ◽  
pp. 02004
Author(s):  
M. Rajaram Narayanan ◽  
S. Nallusamy ◽  
M. Ragesh Sathiyan

In the global scenario, wind turbines and their aerodynamics are always subjected to constant research for increasing their efficiency which converts the abundant wind energy into usable electrical energy. In this research, an attempt is made to increase the efficiency through the changes in surface topology of wind turbines through computational fluid dynamics. Dimples on the other hand are very efficient in reducing air drag as is it evident from the reduction of drag and increase in lift in golf balls. The predominant factors influencing the efficiency of the wind turbines are lift and drag which are to be maximized and minimized respectively. In this research, surface of turbine blades are integrated with dimples of various sizes and arrangements and are analyzed using computational fluid dynamics to obtain an optimum combination. The analysis result shows that there is an increase in power with about 15% increase in efficiency. Hence, integration of dimples on the surface of wind turbine blades has helped in increasing the overall efficiency of the wind turbine.


2021 ◽  
Author(s):  
Khaled Yassin ◽  
Hassan Kassem ◽  
Bernhard Stoevesandt ◽  
Thomas Klemme ◽  
Joachim Peinke

Abstract. One of the emerging problems in modern computational fluid dynamics is the simulation of flow over rough surfaces, wind turbine blades with ice on its surface for instance. An alternative method to numerically simulate rough surfaces instead of using a grid with y+ 


2009 ◽  
Vol 23 (03) ◽  
pp. 505-508 ◽  
Author(s):  
RUI YANG ◽  
REN-NIAN LI ◽  
WEI HAN ◽  
DE-SHUN LI

The flow field past the rotating blade of a horizontal axial wind turbine has been modeled with a full 3–D steady–RANS approach. Flow computations have been performed using the commercial finite–volume solver Fluent. The NREL phase VI wind turbine blade sections from the 3–D rotating geometry were chosen and the corresponding 2–D flow computations have been carried out for comparison with different angles of attack and in stalled conditions. The simulation results are analyzed. The main features of the boundary layer flow are described, for both the rotating blade and the corresponding 2–D profiles. Computed pressure distributions and aerodynamic coefficients show evidence of less lift losses after separation in the 3–D rotating case, mostly for the inward sections of the blade and the highest angles of attack, which is in agreement with the literature.


2013 ◽  
Vol 446-447 ◽  
pp. 452-457 ◽  
Author(s):  
Yong Wang ◽  
De Tian ◽  
Wei He

The hoisting forces on a 38.5m wind turbine blade in multiple positions are computed using the computational fluid dynamics (CFD) method. The computation model is constructed with the steady wind conditions, blade mesh model and the blade positions which are determined by the blade pitch angle, azimuth angle and rotor yaw angle. The maximal and minimal hoisting forces in three-dimensional coordinates are found and the corresponding pitch angle, azimuth angle and yaw angle are obtained. The change of the hoisting forces on wind turbine blades is analyzed. Suggestions are given to decrease the hoisting forces of the blade in open wind environment.


2018 ◽  
Vol 22 (Suppl. 2) ◽  
pp. 681-691 ◽  
Author(s):  
Yan Li ◽  
Shaolong Wang ◽  
Ce Sun ◽  
Xian Yi ◽  
Wenfeng Guo ◽  
...  

For researching on the rules of icing distribution on rotating blade of horizontal axis wind turbine, a Quasi-3-D method is proposed to research on icing on rotating blades of horizontal axis wind turbine by numerical simulation. A 2-D and 3-D method of evaluating the irregular shape of ice has been established. The model of rotating blade from a 1.5 MW horizontal axis wind turbine is used to simulate the process and shape of icing on blade. The simulation is carried out under the conditions with four important parameters including ambient temperature, liquid water content, medium volume drop diameter, and icing time. The results reveal that icing mainly happens on 50% ~ 70% of the blade surface along wingspan from tip to root of blade. There are two kinds of icing shapes including horn shape icing and streamline shape icing. The study can provide theoretical basis and numerical reference to development of anti and deicing strategy for wind turbine blades.


2018 ◽  
Vol 8 (11) ◽  
pp. 2314 ◽  
Author(s):  
Yin Zhang ◽  
Bumsuk Kim

Accurate prediction of the time-dependent system dynamic responses of floating offshore wind turbines (FOWTs) under aero-hydro-coupled conditions is a challenge. This paper presents a numerical modeling tool using commercial computational fluid dynamics software, STAR-CCM+(V12.02.010), to perform a fully coupled dynamic analysis of the DeepCwind semi-submersible floating platform with the National Renewable Engineering Lab (NREL) 5-MW baseline wind turbine model under combined wind–wave excitation environment conditions. Free-decay tests for rigid-body degrees of freedom (DOF) in still water and hydrodynamic tests for a regular wave are performed to validate the numerical model by inputting gross system parameters supported in the Offshore Code Comparison, Collaboration, Continued, with Correlations (OC5) project. A full-configuration FOWT simulation, with the simultaneous motion of the rotating blade due to 6-DOF platform dynamics, was performed. A relatively heavy load on the hub and blade was observed for the FOWT compared with the onshore wind turbine, leading to a 7.8% increase in the thrust curve; a 10% decrease in the power curve was also observed for the floating-type turbines, which could be attributed to the smaller project area and relative wind speed required for the rotor to receive wind power when the platform pitches. Finally, the tower-blade interference effects, blade-tip vortices, turbulent wakes, and shedding vortices in the fluid domain with relatively complex unsteady flow conditions were observed and investigated in detail.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 654 ◽  
Author(s):  
Chengyong Zhu ◽  
Tongguang Wang ◽  
Jianghai Wu

Passive vortex generators (VGs) are widely used to suppress the flow separation of wind turbine blades, and hence, to improve rotor performance. VGs have been extensively investigated on stationary airfoils; however, their influence on unsteady airfoil flow remains unclear. Thus, we evaluated the unsteady aerodynamic responses of the DU-97-W300 airfoil with and without VGs undergoing pitch oscillations, which is a typical motion of the turbine unsteady operating conditions. The airfoil flow is simulated by numerically solving the unsteady Reynolds-averaged Navier-Stokes equations with fully resolved VGs. Numerical modelling is validated by good agreement between the calculated and experimental data with respect to the unsteady-uncontrolled flow under pitch oscillations, and the steady-controlled flow with VGs. The dynamic stall of the airfoil was found to be effectively suppressed by VGs. The lift hysteresis intensity is greatly decreased, i.e., by 72.7%, at moderate unsteadiness, and its sensitivity to the reduced frequency is favorably reduced. The influences of vane height and chordwise installation are investigated on the unsteady aerodynamic responses as well. In a no-stall flow regime, decreasing vane height and positioning VGs further downstream can lead to relatively high effectiveness. Compared with the baseline VG geometry, the smaller VGs can decrease the decay exponent of nondimensionalized peak vorticity by almost 0.02, and installation further downstream can increase the aerodynamic pitch damping by 0.0278. The obtained results are helpful to understand the dynamic stall control by means of conventional VGs and to develop more effective VG designs for both steady and unsteady wind turbine airfoil flow.


Sign in / Sign up

Export Citation Format

Share Document