Assessment of Unsteady Pressure Measurement Uncertainty—Part II: Virtual Three-Hole Probe

Author(s):  
Giulia Dell'Era ◽  
Mehmet Mersinligil ◽  
Jean-François Brouckaert

With the advancements in miniaturization and temperature capabilities of piezoresistive pressure sensors, pneumatic probes—which are the long established standard for flow-path pressure measurements in gas turbine environments—are being replaced with unsteady pressure probes. On the other hand, any measured quantity is by definition inherently different from the “true” value, requiring the estimation of the associated errors for determining the validity of the results and establishing respective confidence intervals. In the context of pressure measurements, the calibration uncertainty values, which differ from measurement uncertainties, are typically provided. Even then, the lack of a standard methodology is evident as uncertainties are often reported without appropriate confidence intervals. Moreover, no time-resolved measurement uncertainty analysis has come to the attention of the authors. The objective of this paper is to present a standard method for the estimation of the uncertainties related to measurements performed using single sensor unsteady pressure probes, with the help of measurements obtained in a one and a half stage low pressure high speed axial compressor test rig as an example. The methodology presented is also valid for similar applications involving the use of steady or unsteady sensors and instruments. The static calibration uncertainty, steady measurement uncertainties, and unsteady measurement uncertainties based on phase-locked average (PLA) and ensemble average are presented by the authors in Dell'Era et al. (2016, “Assessment of Unsteady Pressure Measurement Uncertainty—Part 1: Single Sensor Probe,” ASME J. Eng. Gas Turbines Power, 138(4), p. 041601). Depending on the number of points used for the averaging, different values for uncertainty have been observed, underlining the importance of having greater number of samples. For unsteady flows, higher uncertainties have been observed at regions of higher unsteadiness such as tip leakage vortices, hub-corner vortices, and blade wakes. Unfortunately, the state of the art in single sensor miniature unsteady pressure probes is comparable to multihole pneumatic probes in size, preventing the use of multihole unsteady probes in turbomachinery environments. However, the angular calibration properties of a single sensor probe obtained via an aerodynamic calibration may further be exploited as if a three-hole directional probe is employed, yielding corrected total pressure, unsteady yaw angle, static pressure and Mach number distributions based on the PLAs with the expense of losing the time-correlation between the virtual ports. The aerodynamic calibration and derivation process are presented together with the assessment of the uncertainties associated to these derived quantities in this contribution. In the virtual three-hole mode, similar to that of a single sensor probe, higher uncertainty values are observed at regions of higher unsteadiness.

Author(s):  
Giulia Dell'Era ◽  
Mehmet Mersinligil ◽  
Jean-François Brouckaert

With the advancements in miniaturization and temperature capabilities of piezoresistive pressure sensors, pneumatic probes—which are the long established standard for flow-path pressure measurements in gas turbine environments—are being replaced with unsteady pressure probes. Any measured quantity is by definition inherently different from the “true” value, requiring the estimation of the associated errors for determining the validity of the results and establishing respective confidence intervals. In the context of pressure measurements, the calibration uncertainty values, which differ from measurement uncertainties, are typically provided. Even then, the lack of a standard methodology is evident as uncertainties are often reported without appropriate confidence intervals. Moreover, no time-resolved measurement uncertainty analysis has come to the attention of the authors. The objective of this paper is to present a standard method for the estimation of the uncertainties related to measurements performed using single sensor unsteady pressure probes, with the help of measurements obtained in a one and a half stage low pressure (LP) high speed axial compressor test rig as an example. The methodology presented is also valid for similar applications involving the use of steady or unsteady sensors and instruments. The static calibration uncertainty, steady measurement uncertainties, and unsteady measurement uncertainties based on phase-locked average (PLA) and ensemble average are presented in this contribution. Depending on the number of points used for the averaging, different values for uncertainty have been observed, underlining the importance of having greater number of samples. For unsteady flows, higher uncertainties have been observed at regions of higher unsteadiness such as tip leakage vortices, hub corner vortices, and blade wakes. Unfortunately, the state of the art in single sensor miniature unsteady pressure probes is comparable to multihole pneumatic probes in size, preventing the use of multihole unsteady probes in turbomachinery environments. However, the angular calibration properties of a single sensor probe obtained via an aerodynamic calibration may further be exploited as if a three-hole directional probe is employed, yielding corrected total pressure, unsteady yaw angle, static pressure, and Mach number distributions based on the PLAs with the expense of losing the time-correlation between the virtual ports. The aerodynamic calibration and derivation process are presented together with the assessment of the uncertainties associated to these derived quantities by the authors in Dell'Era et al. (2016, “Assessment of Unsteady Pressure Measurement Uncertainty—Part II: Virtual Three Hole Probe,” ASME J. Eng. Gas Turbines Power, 138(4), p. 041602). In the virtual three-hole mode, similar to that of a single sensor probe, higher uncertainty values are observed at regions of higher unsteadiness.


Author(s):  
Giulia Dell’Era ◽  
Mehmet Mersinligil ◽  
Jean-François Brouckaert

With the advancements in miniaturization and temperature capabilities of piezo-resistive pressure sensors, pneumatic probes — which are the long established standard for flow-path pressure measurements in gas turbine environments — are being replaced with unsteady pressure probes. On the other hand, any measured quantity is by definition inherently different from the ‘true’ value, requiring the estimation of the associated errors for determining the validity of the results and establishing respective confidence intervals. In the context of pressure measurements, the calibration uncertainty values, which differ from measurement uncertainties, are typically provided. Even then, the lack of a standard methodology is evident as uncertainties are often reported without appropriate confidence intervals. Moreover, no time-resolved measurement uncertainty analysis has come to the attention of the authors. The objective of this paper is to present a standard method for the estimation of the uncertainties related to measurements performed using single sensor unsteady pressure probes, with the help of measurements obtained in a one and a half stage low pressure high speed axial compressor test rig as an example. The methodology presented is also valid for similar applications involving the use of steady or unsteady sensors and instruments. The static calibration uncertainty, steady measurement uncertainties and unsteady measurement uncertainties based on phase-locked and ensemble averages are presented by the authors in [1]. Depending on the number of points used for the averaging, different values for uncertainty have been observed, underlining the importance of having greater number of samples. For unsteady flows, higher uncertainties have been observed at regions of higher unsteadiness such as tip leakage vortices, hub corner vortices and blade wakes. Unfortunately, the state of the art in single-sensor miniature unsteady pressure probes is comparable to multi-hole pneumatic probes in size, preventing the use of multi-hole unsteady probes in turbomachinery environments. However, the angular calibration properties of a single sensor probe obtained via an aerodynamic calibration may further be exploited as if a three-hole directional probe is employed, yielding corrected total pressure, unsteady yaw angle, static pressure and Mach number distributions based on the phase-locked averages with the expense of losing the time-correlation between the virtual ports. The aerodynamic calibration and derivation process are presented together with the assessment of the uncertainties associated to these derived quantities in this contribution. In the virtual three-hole mode, similar to that of a single-sensor probe, higher uncertainty values are observed at regions of higher unsteadiness.


Author(s):  
Giulia Dell’Era ◽  
Mehmet Mersinligil ◽  
Jean-François Brouckaert

With the advancements in miniaturization and temperature capabilities of piezo-resistive pressure sensors, pneumatic probes — which are the long established standard for flow-path pressure measurements in gas turbine environments — are being replaced with unsteady pressure probes. Any measured quantity is by definition inherently different from the ‘true’ value, requiring the estimation of the associated errors for determining the validity of the results and establishing respective confidence intervals. In the context of pressure measurements, the calibration uncertainty values, which differ from measurement uncertainties, are typically provided. Even then, the lack of a standard methodology is evident as uncertainties are often reported without appropriate confidence intervals. Moreover, no time-resolved measurement uncertainty analysis has come to the attention of the authors. The objective of this paper is to present a standard method for the estimation of the uncertainties related to measurements performed using single sensor unsteady pressure probes, with the help of measurements obtained in a one and a half stage low pressure high speed axial compressor test rig as an example. The methodology presented is also valid for similar applications involving the use of steady or unsteady sensors and instruments. The static calibration uncertainty, steady measurement uncertainties and unsteady measurement uncertainties based on phase-locked and ensemble averages are presented in this contribution. Depending on the number of points used for the averaging, different values for uncertainty have been observed, underlining the importance of having greater number of samples. For unsteady flows, higher uncertainties have been observed at regions of higher unsteadiness such as tip leakage vortices, hub corner vortices and blade wakes. Unfortunately, the state of the art in single-sensor miniature unsteady pressure probes is comparable to multi-hole pneumatic probes in size, preventing the use of multi-hole unsteady probes in turbomachinery environments. However, the angular calibration properties of a single sensor probe obtained via an aerodynamic calibration may further be exploited as if a three-hole directional probe is employed, yielding corrected total pressure, unsteady yaw angle, static pressure and Mach number distributions based on the phase-locked averages with the expense of losing the time-correlation between the virtual ports. The aerodynamic calibration and derivation process are presented together with the assessment of the uncertainties associated to these derived quantities by the authors in [1]. In the virtual three-hole mode, similar to that of a single-sensor probe, higher uncertainty values are observed at regions of higher unsteadiness.


2001 ◽  
Author(s):  
C. Xu ◽  
R. S. Amano

Abstract An unsteady pressure measurement system was developed to measure the unsteady pressure field of an axial fan. The fan unsteady pressure fields of an inlet and outlet were obtained at three axial positions for seven-radial directions. The results showed that there is a relatively long response time for pressure drop both in inlet and outlet sections during the fan start-up. The measurements also showed that, due to the vortex shedding from the trailing edge of each fan blade, the fan outlet unsteady pressure distributions have a primary frequency related to the fan operating frequency. The time-dependent pressure measurements showed that pressure distributions of inlet and outlet during the fan start-up were severely unsteady and the main variation frequency of the pressure is much smaller than the fan rotational frequency. The pressure measurement on the fan blades showed that the pressure oscillations were mainly dominated by the vortex shedding from the fen blades. A flow visualization study was also performed to validate the flow characteristics near the blade surface. A complete set of time-dependent pressure measurements along the blade fan surfaces, fan inlet and outlet are suitable for an axial fan database for an industrial use as well as CFD code validation.


2015 ◽  
Vol 8 (4) ◽  
pp. 1673-1684 ◽  
Author(s):  
G. E. Bodeker ◽  
S. Kremser

Abstract. The Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) provides reference quality RS92 radiosonde measurements of temperature, pressure and humidity. A key attribute of reference quality measurements, and hence GRUAN data, is that each datum has a well characterized and traceable estimate of the measurement uncertainty. The long-term homogeneity of the measurement records, and their well characterized uncertainties, make these data suitable for reliably detecting changes in global and regional climate on decadal time scales. Considerable effort is invested in GRUAN operations to (i) describe and analyse all sources of measurement uncertainty to the extent possible, (ii) quantify and synthesize the contribution of each source of uncertainty to the total measurement uncertainty, and (iii) verify that the evaluated net uncertainty is within the required target uncertainty. However, if the climate science community is not sufficiently well informed on how to capitalize on this added value, the significant investment in estimating meaningful measurement uncertainties is largely wasted. This paper presents and discusses the techniques that will need to be employed to reliably quantify long-term trends in GRUAN data records. A pedagogical approach is taken whereby numerical recipes for key parts of the trend analysis process are explored. The paper discusses the construction of linear least squares regression models for trend analysis, boot-strapping approaches to determine uncertainties in trends, dealing with the combined effects of autocorrelation in the data and measurement uncertainties in calculating the uncertainty on trends, best practice for determining seasonality in trends, how to deal with co-linear basis functions, and interpreting derived trends. Synthetic data sets are used to demonstrate these concepts which are then applied to a first analysis of temperature trends in RS92 radiosonde upper air soundings at the GRUAN site at Lindenberg, Germany (52.21° N, 14.12° E).


2017 ◽  
Vol 122 (1247) ◽  
pp. 83-103 ◽  
Author(s):  
R. Saravanan ◽  
S.L.N. Desikan ◽  
T.M. Muruganandam

ABSTRACTThe present study investigates the behaviour of the shock train in a typical Ramjet engine under the influence of shock and expansion waves at the entry of a low aspect ratio (1:0.75) rectangular duct/isolator at supersonic Mach number (M = 1.7). The start/unstart characteristics are investigated through steady/unsteady pressure measurements under different back and dynamic pressures while the shock train dynamics are captured through instantaneous Schlieren flow visualisation. Two parameters, namely pressure recovery and the pressure gradient, is derived to assess the duct/isolator performance. For a given back pressure, with maximum blockage (9% above nominal), the duct/isolator flow is established when the dynamic pressure is increased by 23.5%. The unsteady pressure measurements indicate different scales of eddies above 80 Hz (with and without flap deflection). Under the no flap deflection (no back pressure) condition, the maximum fluctuating pressure component is 0.01% and 0.1% of the stagnation pressure at X/L = 0.03 (close to the entry of the duct) and X/L = 0.53 (middle of the duct), respectively. Once the flap is deflected (δ = 8°), decay in eddies by one order is noticed. Further increase in back pressure (δ ≥ 11°) leads the flow to unstart where eddies are observed to be disappeared.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Erik Flídr ◽  
Petr Straka ◽  
Milan Kladrubský ◽  
Tomáš Jelínek

AbstractThis contribution describes experimental and numerical research of an unsteady behaviour of a flow in an end-wall region of a linear nozzle cascade. Effects of compressibility ($$M_\mathrm {2,is}$$ M 2 , is ) and inlet flow angle ($$\alpha _1$$ α 1 ) were investigated. Reynolds number ($$Re_\mathrm {2,is}$$ R e 2 , is $$=8.5\times 10^5$$ = 8.5 × 10 5 ) was held constant for all tested cases. Unsteady pressure measurement was performed at the blade mid-span in the identical position $${\mathfrak {s}}$$ s to obtain reference data. Surface flow visualizations were performed as well as the steady pressure measurement to support conclusions obtained from the unsteady measurements. Comparison of the surface Mach number distributions obtained from the experiments and from the numerical simulations are presented. Flow visualizations are then compared with calculated limiting streamlines on the blade suction surface. It was shown, that the flow structures in the end-wall region were not affected by the primary flow at the blade mid-span, even when the shock wave formed. This conclusion was made from the experimental, numerical, steady as well as unsteady points of view. Three significant frequencies in the power spectra suggested that there was a periodical interaction between the vortex structures in the end-wall region. Based on the data analyses, anisotropic turbulence was observed in the cascade.


2021 ◽  
pp. 197140092110551
Author(s):  
Robert Heider ◽  
Peter G Kranz ◽  
Erin Hope Weant ◽  
Linda Gray ◽  
Timothy J Amrhein

Rationale and Objectives Accurate cerebrospinal fluid (CSF) pressure measurements are critical for diagnosis and treatment of pathologic processes involving the central nervous system. Measuring opening CSF pressure using an analog device takes several minutes, which can be burdensome in a busy practice. The purpose of this study was to compare accuracy of a digital pressure measurement device with analog manometry, the reference gold standard. Secondary purpose included an assessment of possible time savings. Materials and Methods This study was a retrospective, cross-sectional investigation of 71 patients who underwent image-guided lumbar puncture (LP) with opening CSF pressure measurement at a single institution from June 2019 to September 2019. Exclusion criteria were examinations without complete data for both the digital and analog measurements or without recorded needle gauge. All included LPs and CSF pressures were measured with the patient in the left lateral decubitus position, legs extended. Acquired data included (1) digital and analog CSF pressures and (2) time required to measure CSF pressure. Results A total of 56 procedures were analyzed in 55 patients. There was no significant difference in mean CSF pressures between devices: 22.5 cm H2O digitally vs 23.1 analog ( p = .7). Use of the digital manometer resulted in a time savings of 6 min (438 s analog vs 78 s digital, p < .001). Conclusion Cerebrospinal fluid pressure measurements obtained with digital manometry demonstrate comparable accuracy to the reference standard of analog manometry, with an average time savings of approximately 6 min per case.


PEDIATRICS ◽  
1977 ◽  
Vol 59 (5) ◽  
pp. 788-789
Author(s):  
A. Frederick North

Dr. Shiela Mitchell and her distinguished committee recommended in the July 1975 issue that blood pressure measurements should be a regular and routine part of every physical examination of every child over the age of 2. They recommended that any child with a blood pressure over the 95th percentile for age have a fundoscopic examination and at least one repeated blood pressure measurement and clinical evaluation within a few weeks. They stated that repeated examinations and further investigations are indicated if the blood pressure persists at or above the 95th percentile.


Sign in / Sign up

Export Citation Format

Share Document