The Influence of Reynolds Number, Mach Number and Incidence Effects on Loss Production in Low Pressure Turbine Airfoils

Author(s):  
Rau´l Va´zquez ◽  
Antonio Antoranz ◽  
David Cadrecha ◽  
Leyre Arman˜anzas

This paper presents an experimental study of the flow field in an annular cascade of Low Pressure Turbine airfoils. The influence of Reynolds number, Mach number and incidence on profile and end wall losses have been investigated. The annular cascade consisted of 100 high lift, high aspect ratio, high turning blades that are characteristic of modern LP Turbines. The investigation was carried out for a wide range of Reynolds numbers, extending from 120k to 315k, exit Mach numbers, from 0.5 to 0.9, and incidences from −20 to +14 degrees. Results clearly indicate a significant effect of incidence and Mach number in secondary loss production; however, the Reynolds number shows it much weaker impact. It has also been found that the profile loss production is strongly influenced by both Reynolds and Mach numbers, being the impact of the incidence weaker. Finally, measured data suggest that, in order to properly reproduce the performance of these types of airfoils, annular cascades can be required as far as linear cascades may miss some essential flow features.

Author(s):  
Marion Mack ◽  
Roland Brachmanski ◽  
Reinhard Niehuis

The performance of the low pressure turbine (LPT) can vary appreciably, because this component operates under a wide range of Reynolds numbers. At higher Reynolds numbers, mid and aft loaded profiles have the advantage that transition of suction side boundary layer happens further downstream than at front loaded profiles, resulting in lower profile loss. At lower Reynolds numbers, aft loading of the blade can mean that if a suction side separation exists, it may remain open up to the trailing edge. This is especially the case when blade lift is increased via increased pitch to chord ratio. There is a trend in research towards exploring the effect of coupling boundary layer control with highly loaded turbine blades, in order to maximize performance over the full relevant Reynolds number range. In an earlier work, pulsed blowing with fluidic oscillators was shown to be effective in reducing the extent of the separated flow region and to significantly decrease the profile losses caused by separation over a wide range of Reynolds numbers. These experiments were carried out in the High-Speed Cascade Wind Tunnel of the German Federal Armed Forces University Munich, Germany, which allows to capture the effects of pulsed blowing at engine relevant conditions. The assumed control mechanism was the triggering of boundary layer transition by excitation of the Tollmien-Schlichting waves. The current work aims to gain further insight into the effects of pulsed blowing. It investigates the effect of a highly efficient configuration of pulsed blowing at a frequency of 9.5 kHz on the boundary layer at a Reynolds number of 70000 and exit Mach number of 0.6. The boundary layer profiles were measured at five positions between peak Mach number and the trailing edge with hot wire anemometry and pneumatic probes. Experiments were conducted with and without actuation under steady as well as periodically unsteady inflow conditions. The results show the development of the boundary layer and its interaction with incoming wakes. It is shown that pulsed blowing accelerates transition over the separation bubble and drastically reduces the boundary layer thickness.


2004 ◽  
Vol 128 (2) ◽  
pp. 251-260 ◽  
Author(s):  
Douglas G. Bohl ◽  
Ralph J. Volino

The effectiveness of three-dimensional passive devices for flow control on low pressure turbine airfoils was investigated experimentally. A row of small cylinders was placed at the pressure minimum on the suction side of a typical airfoil. Cases with Reynolds numbers ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) were considered under low freestream turbulence conditions. Streamwise pressure profiles and velocity profiles near the trailing edge were documented. Without flow control a separation bubble was present, and at the lower Reynolds numbers the bubble did not close. Cylinders with two different heights and a wide range of spanwise spacings were considered. Reattachment moved upstream as the cylinder height was increased or the spacing was decreased. If the spanwise spacing was sufficiently small, the flow at the trailing edge was essentially uniform across the span. The cylinder size and spacing could be optimized to minimize losses at a given Reynolds number, but cylinders optimized for low Reynolds number conditions caused increased losses at high Reynolds numbers. The effectiveness of two-dimensional bars had been studied previously under the same flow conditions. The cylinders were not as effective for maintaining low losses over a range of Reynolds numbers as the bars.


Author(s):  
Douglas G. Bohl ◽  
Ralph J. Volino

The effectiveness of three dimensional passive devices for flow control on low pressure turbine airfoils was investigated experimentally. A row of small cylinders was placed at the pressure minimum on the suction side of a typical airfoil. Cases with Reynolds numbers ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) were considered under low freestream turbulence conditions. Streamwise pressure profiles and velocity profiles near the trailing edge were documented. Without flow control a separation bubble was present, and at the lower Reynolds numbers the bubble did not close. Cylinders with two different heights and a wide range of spanwise spacings were considered. Reattachment moved upstream as the cylinder height was increased or the spacing was decreased. If the spanwise spacing was sufficiently small, the flow at the trailing edge was essentially uniform across the span. The cylinder size and spacing could be optimized to minimize losses at a given Reynolds number, but cylinders optimized for low Reynolds number conditions caused increased losses at high Reynolds numbers. The effectiveness of two-dimensional bars had been studied previously under the same flow conditions. The cylinders were not as effective for maintaining low losses over a range of Reynolds numbers as the bars.


Author(s):  
Michele Marconcini ◽  
Filippo Rubechini ◽  
Roberto Pacciani ◽  
Andrea Arnone ◽  
Francesco Bertini

Low pressure turbine airfoils of the present generation usually operate at subsonic conditions, with exit Mach numbers of about 0.6. To reduce the costs of experimental programs it can be convenient to carry out measurements in low speed tunnels in order to determine the cascades performance. Generally speaking, low speed tests are usually carried out on airfoils with modified shape, in order to compensate for the effects of compressibility. A scaling procedure for high-lift, low pressure turbine airfoils to be studied in low speed conditions is presented and discussed. The proposed procedure is based on the matching of a prescribed blade load distribution between the low speed airfoil and the actual one. Such a requirement is fulfilled via an Artificial Neural Network (ANN) methodology and a detailed parameterization of the airfoil. A RANS solver is used to guide the redesign process. The comparison between high and low speed profiles is carried out, over a wide range of Reynolds numbers, by using a novel three-equation, transition-sensitive, turbulence model. Such a model is based on the coupling of an additional transport equation for the so-called laminar kinetic energy (LKE) with the Wilcox k–ω model and it has proven to be effective for transitional, separated-flow configurations of high-lift cascade flows.


Author(s):  
Kevin Keadle ◽  
Mark McQuilling

High lift low pressure turbine airfoils have complex flow features that can require advanced modeling capabilities for accurate flow predictions. These features include separated flows and the transition from laminar to turbulent boundary layers. Recent applications of computational fluid dynamics based on the Reynolds-averaged Navier-Stokes formulation have included modeling for attached and separated flow transition mechanisms in the form of empirical correlations and two- or three-equation eddy viscosity models. This study uses the three-equation model of Walters and Cokljat [1] to simulate the flow around the Pack B and L2F low pressure turbine airfoils in a two-dimensional cascade arrangement at a Reynolds number of 25,000. This model includes a third equation for the development of pre-transitional laminar kinetic energy (LKE), and is an updated version of the Walters and Leylek [2] model. The aft-loaded Pack B has a nominal Zweifel loading coefficient of 1.13, and the front-loaded L2F has a nominal loading coefficient of 1.59. Results show the updated LKE model improves predicted accuracy of pressure coefficient and velocity profiles over its previous version as well as two-equation RANS models developed for separated and transitional flows. Transition onset behavior also compares favorably with experiment. However, the current model is not found suitable for wake total pressure loss predictions in two-dimensional simulations at extremely low Reynolds numbers due to the predicted coherency of suction side vortices generated in the separated shear layers which cause a local gain in wake total pressure.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Jiahuan Cui ◽  
V. Nagabhushana Rao ◽  
Paul Tucker

Using a range of high-fidelity large eddy simulations (LES), the contrasting flow physics on the suction surface, pressure surface, and endwalls of a low-pressure turbine (LPT) blade (T106A) was studied. The current paper attempts to provide an improved understanding of the flow physics over these three zones under the influence of different inflow boundary conditions. These include: (a) the effect of wakes at low and high turbulence intensity on the flow at midspan and (b) the impact of the state of the incoming boundary layer on endwall flow features. On the suction surface, the pressure fluctuations on the aft portion significantly reduced at high freestream turbulence (FST). The instantaneous flow features revealed that this reduction at high FST (HF) is due to the dominance of “streak-based” transition over the “Kelvin–Helmholtz” (KH) based transition. Also, the transition mechanisms observed over the turbine blade were largely similar to those on a flat plate subjected to pressure gradients. On pressure surface, elongated vortices were observed at low FST (LF). The possibility of the coexistence of both the Görtler instability and the severe straining of the wakes in the formation of these elongated vortices was suggested. While this was true for the cases under low turbulence levels, the elongated vortices vanished at higher levels of background turbulence. At endwalls, the effect of the state of the incoming boundary layer on flow features has been demonstrated. The loss cores corresponding to the passage vortex and trailing shed vortex were moved farther from the endwall with a turbulent boundary layer (TBL) when compared to an incoming laminar boundary layer (LBL). Multiple horse-shoe vortices, which constantly moved toward the leading edge due to a low-frequency unstable mechanism, were captured.


Author(s):  
M. Eric Lyall ◽  
Paul I. King ◽  
Rolf Sondergaard ◽  
John P. Clark ◽  
Mark W. McQuilling

This paper presents an experimental and computational study of the midspan low Reynolds number loss behavior for two highly loaded low pressure turbine airfoils, designated L2F and L2A, which are forward and aft loaded, respectively. Both airfoils were designed with incompressible Zweifel loading coefficients of 1.59. Computational predictions are provided using two codes, Fluent (with k-k1-ω model) and AFRL’s Turbine Design and Analysis System (TDAAS), each with a different eddy-viscosity RANS based turbulence model with transition capability. Experiments were conducted in a low speed wind tunnel to provide transition models for computational comparisons. The Reynolds number range based on axial chord and inlet velocity was 20,000 < Re < 100,000 with an inlet turbulence intensity of 3.1%. Predictions using TDAAS agreed well with the measured Reynolds lapse rate. Computations using Fluent however, predicted stall to occur at significantly higher Reynolds numbers as compared to experiment. Based on triple sensor hot-film measurements, Fluent’s premature stall behavior is likely the result of the eddy-viscosity hypothesis inadequately capturing anisotropic freestream turbulence effects. Furthermore, rapid distortion theory is considered as a possible analytical tool for studying freestream turbulence that influences transition near the suction surface of LPT airfoils. Comparisons with triple sensor hot-film measurements indicate that the technique is promising but more research is required to confirm its utility.


2021 ◽  
pp. 1-17
Author(s):  
Maxime Fiore ◽  
Nicolas Gourdain

Abstract This paper presents the Large Eddy Simulation of a Low-Pressure Turbine Nozzle Guide Vane for different Reynolds (Re) and Mach numbers (Ma) with or without inlet turbulence prescribed. The analysis is based on a slice of a LPT blading representative of a midspan flow. The characteristic Re of the LPT can vary by a factor of four between take-off and cruise conditions. In addition, the LPT operates at different Ma and the incident flow can have significant levels of turbulence due to upstream blade wakes. The paper investigates numerically using LES the flow around a LPT blading with three different Reynolds number Re = 175'000 (cruise), 280'000 (mid-level altitude) and 500'000 (take-off) keeping the same characteristic Mach number Ma = 0.2 and three different Mach number Ma = 0.2, 0.5 and 0.8 keeping the same Reynolds number Re= 280'000. These different simulations are performed with 0% Free Stream Turbulence (FST) followed by inlet turbulence (6% FST). The study focuses on different flow characteristics: pressure distribution around the blade, near-wall flow behavior, loss generation and Turbulent Kinetic Energy budget. The results show an earlier boundary layer separation on the aft of the blade suction side when the Re is increased while the free-stream turbulence delays separation. The TKE budget shows the predominant effect of the turbulent production and diffusion in the wake, the axial evolution of these different terms being relatively insensitive to Re and Ma.


Author(s):  
Wenhua Duan ◽  
Jian Liu ◽  
Weiyang Qiao

Abstract A numerical analysis of the effect of Mach number on the boundary layer development and aerodynamic performance of a high-lift, after loaded low pressure turbine blade is presented in this paper. The turbine blade is designed for the GTF engine and works in a low Reynolds number, high Mach number environment. Three different isentropic exit Mach numbers (0.14, 0.87 and 1.17) are simulated by large eddy simulation method, while the Reynolds number based on the axial chord length of the blade and the exit flow velocity is kept the same (1 × 105). The condition Mais,2 = 0.14 represents the lowspeeed wind tunnel environment which is usually used in the low pressure turbine investigation. The condition Mais,2 = 0.87 represents the design point of the turbine blade. The condition Mais,2 = 1.17 represents the severe environment when the shock wave shows up. A comparison of the boundary layer development is made and the total pressure loss results from the boundary layer is discussed.


Sign in / Sign up

Export Citation Format

Share Document