Temporary Bonding/Debonding of Silicon Substrates Based on Propylene Carbonate

2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Zhiyuan Zhu ◽  
Min Yu ◽  
Lisha Liu ◽  
Yufeng Jin

This paper researches temporary bonding/debonding based on propylene carbonate (PPC). The highest shear strength of 4.1 MPa was achieved when pure PPC was used as bonding adhesive. Room temperature debonding methods were investigated and compared with thermal debonding. Chemical debonding at room temperature was realized for bonding with the pure PPC. Several different chemicals can be used for chemical debonding. A photo acid generator (PAG)-assisted debonding method was demonstrated at room temperature when PAG-loaded PPC (PAG-PPC) was used as bonding adhesive. The ultraviolet (UV) radiation was used to enhance the PAG-assisted debonding.

1996 ◽  
Vol 422 ◽  
Author(s):  
H. Horiguchi ◽  
T. Kinone ◽  
R. Saito ◽  
T. Kimura ◽  
T. Ikoma

AbstractErbium films are evaporated on crystalline silicon substrates and are thermally diffused into silicon in an Ar+02 or H2 flow. Very sharp Er3+-related luminescence peaks are observed around 1.54 μ m.The main peak as well as the fine structures of the luminescence spectra depend on the annealing atmosphere, suggesting different luminescence centers. The full width at half maximum (FWHM) of the main peaks is ≤ 0.5nm at 20K. Thermal diffusion with Al films on top of the Er films is found to increase the intensity of the Er3+-related peaks greatly. The temperature dependence between 20 K and room temperature is relatively small, and a strong luminescence is obtained at room temperature.


1999 ◽  
Vol 606 ◽  
Author(s):  
S. Bhaskar ◽  
S. B. Majumder ◽  
P. S. Dobal ◽  
R. S. Katiyar ◽  
A. L. M. Cruz ◽  
...  

AbstractIn the present work we have optimized the process parameters to yield homogeneous, smooth ruthenium oxide (RuO2) thin films on silicon substrates by a solution deposition technique using RuCl3.×.H2O as the precursor material. Films were annealed in a temperature range of 300°C to 700°C, and it was found that RuO2 crystallizes at a temperature as low as 400°C. The crystallinity of the films improves with increased annealing temperature and the resistivity decreases from 4.86µΩ-m (films annealed at 400°C) to 2.94pµΩ (films annealed at 700°C). Ageing of the precursor solution has a pronounced effect on the measured resistivities of RuO2 thin films. It was found that the measured room temperature resistivities increases from 2.94µΩ-m to 45.7µΩ-m when the precursor sol is aged for aged 60 days. AFM analysis on the aged films shows that the grain size and the surface roughness of the annealed films increase with the ageing of the precursor solution. From XPS analysis we have detected the presence of non-transformed RuCl3 in case of films prepared from aged solution. We propose, that solution ageing inhibits the transformation of RuCl3 to RuO2 during the annealing of the films. The deterioration of the conductivity with solution ageing is thought to be related with the chloride contamination in the annealed films.


1995 ◽  
Vol 10 (8) ◽  
pp. 1884-1888 ◽  
Author(s):  
S. Krishnan ◽  
M.I. Chaudhry ◽  
S.V. Babu

Amorphous silicon germanium (a-SiGe) films, deposited on silicon substrates at room temperature in a molecular beam epitaxy system, were transformed into a single-crystal film and doped with phosphorus by exposure to KrF laser pulses. Electron channeling patterns showed that laser exposure resulted in crystallization of the undoped a-SiGe films. The SiGe films were doped by laser irradiation, using a phosphorus spin-on-dopant. The sheet resistance of the doped films decreased with increasing numbers of pulses, reaching a value of about ∼ 5 × 104 ohms/□ after 15 pulses. I-V data from mesa-type n-SiGe/p-Si diode devices were used to determine the effect of laser processing on the quality of the SiGe films.


2018 ◽  
Vol 774 ◽  
pp. 7-12
Author(s):  
Hideaki Katogi ◽  
Kenichi Takemura ◽  
Mao Mochizuki

In this study, interfacial shear strength of resin particles added carbon fiber/maleic acid anhydride grafted polypropylene under water temperature was investigated. Water temperature range was from room temperature to 80 oC. The maximum immersion time was 24 hours. Micro debonding tests of non and resin particles added composites were conducted. Fracture surface of resin particles added composite were observed by Scanning Electron Microscope (SEM). As a result, interfacial shear strengths of non particles added composite monotonously decreased with an increase of water temperature. Interfacial shear strength of resin particles added composite was higher than that of non resin particles added composite under all water temperatures except for 50 oC. From SEM observation, large resin particles on surface of carbon fiber after water immersion at 50 oC were found. And, many matrices and large resin particles on surface of carbon fiber after water immersion at 80 oC were found. Therefore, interfacial shear strength of composite was improved because resin particle addition prevented water penetration into the interface between fiber and matrix under water immersion less than 50 oC. And, interfacial shear strength of composite was probably improved by anchor effect of resin particle under water immersion at 80 oC.


2000 ◽  
Vol 648 ◽  
Author(s):  
D. Tsamouras ◽  
G. Palasantzas ◽  
J. Th. M. De Hosson ◽  
G. Hadziioannou

AbstractGrowth front scaling aspects are investigated for PPV-type oligomer thin films vapor- deposited onto silicon substrates at room temperature. For film thickness d~15-300 nm, commonly used in optoelectronic devices, correlation function measurement by atomic force microscopy yields roughness exponents in the range H=0.45±0.04, and an rms roughness amplitude which evolves with film thickness as a power law σ∝ dβ with β=0.28±0.05. The non-Gaussian height distribution and the measured scaling exponents (H and β) suggest a roughening mechanism close to that described by the Kardar-Parisi-Zhang scenario.


1996 ◽  
Vol 438 ◽  
Author(s):  
C. G. Fountzoulas ◽  
J. D. Demaree ◽  
L. C. Sengupta ◽  
J. K. Hirvonen

AbstractAmorphous, 700 nm thick, diamond-like carbon coatings containing silicon (Si-DLC), farmed by Ar+ ion beam assisted deposition (IBAD) on silicon substrates, were annealed in air at temperatures ranging from room temperature to 600°C for 30 minutes. RBS analysis showed that the composition of the films remained the same up to 200°C, but at higher temperatures the Si-DLC coatings began to oxidize at the outer surface of the coating, forming a surface layer of SiO2. After in-air annealing at 600°C the coating had been completely converted to SiO2, with no trace of carbon seen by RBS. FTIR spectra of the unannealed coatings showed a very broad mode typical of Si-DLC bonding as well as some absorption features associated with Si and SiO2. Above 200°C the transmission mode shifted to higher frequencies which may be caused by the growth of SiO2 and the decrease of the Si-DLC film thickness. The room temperature ball-on-disk friction coefficient of the coating against a 1/2′′ diameter 440 C steel ball at 1 N load ranged from 0.2 for the original coating up to 0.5 after a 100° anneal and returned to 0.2 after annealing at 200–400°C and fell to 0.12 after a 500°C exposure. The average Knoop microhardness (uncorrected for substrate effects) was 10 GPa (1,000 KHN) for coatings annealed at temperatures as high as 400°C. All coatings up to 500 °C passed the qualitative “Scotch Tape” test.


2015 ◽  
Vol 1718 ◽  
pp. 27-31
Author(s):  
Andrew Wei ◽  
Radu Reit ◽  
Walter Voit

ABSTRACTIn this study, thiol-epoxy polymer composites are explored as candidates for high-temperature die attach applications. We present a polymer composite processing technique for die attach adhesives with low cure-stress. Lap shear samples of both a polymer adhesive and current industry adhesives were subjected to tensile testing and die shear strength was compared. At 260 °C, the candidate polymer adhesive exhibited a die shear strength of 0.500 MPa in comparison with 1.35 MPa and 0.258 MPa for two control adhesives. While samples showed less variation in properties in die shear strength between room temperature and 260 °C, the absolute die shear strength values were inferior to commercial adhesives at both room and elevated temperatures. We hypothesize that low cure stress networks, such as the thiol-epoxies presented, provide a compelling choice to engineer new die attach adhesives, but realize that further network refining is needed including the addition of adhesion promoters and other additives, a task better suited to industrial research with a focus in properties optimization.


Sign in / Sign up

Export Citation Format

Share Document