The Influence of Nanoparticle Fillers on the Effectiveness of Phosphorus Diffusion Pastes

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Rudolf Nüssl ◽  
Josef Biba ◽  
David Britton

A phosphosilicate polymer spin-on glass dopant has been adapted to produce a screen printable N-type diffusion pastes using different types of nanoparticles as functional additives to quantitatively change the doping strength of the paste. Strong qualitative and quantitative differences in the resulting phosphorous concentration profiles after diffusion have been found between different compositions. Not only is an intermediate doping level obtainable if silicon nanoparticles are used instead of silica but also a shallower dopant depth is also achieved. The electrical quality of the layer formed by diffusing phosphorus into the surface of a P-type silicon wafer has been investigated by the fabrication and testing of P-N junction solar cells. The devices exhibit diodelike current–voltage (IV) characteristics with open-circuit voltages of 0.437 V and 0.523 V and short-circuit current densities of 1.88 mA/cm2 and 4.78 mA/cm2 indicating a low doping level of the cell emitter and a relatively high series resistance of the junction.

1999 ◽  
Vol 581 ◽  
Author(s):  
Doug Schulz ◽  
R. Ribelin ◽  
X. Wu ◽  
K.M. Jones ◽  
R.J. Matson ◽  
...  

ABSTRACTNano-sized dispersions have been employed as precursor inks for the spray deposition of contacts to both Si and CdTe materials. In the case of Si, nano-sized Al particles (nano-Al) were dispersed and spray deposited onto p-type Si. Annealing above the eutectic temperature causes alloy formation yielding a p+ layer with p ∼ 10−4 Ω•cm. For CdTe, nano-sized Te particles (nano-Te) were dispersed and sprayed onto CdTe/CdS/SnO2/glass heterostructures. Contact to the CdTe layer occurred during a 30 min anneal in He (T = 215 to 255 °C). These solar cells were finished by spin-coating the Te layer with Ag paint and subsequently annealing in air (100 °C / 1 h). This approach produces solar cells with open circuit voltages (Voc) from 720 to 800 mV, short circuit current densities (Jsc) from 18 to 20 mA/cm2 and efficiencies up to 10.3%. The performance of these cells was similar to those produced using the standard NREL contact.


2003 ◽  
Vol 762 ◽  
Author(s):  
Chunhai Ji ◽  
Wayne A. Anderson

AbstractIn recent work, the electrical properties of metal-induced-grown (MIG) Si thin films were studied by using current-voltage (I-V) data from a metal/Si Schottky contact. It was found that controlling the doping level of the films and annealing in forming gas (15% H2 and 85% N2) can improve the quality of the nc-Si films. From SIMS analysis on the nc-Si film deposited from a highly doped target, the nc-Si can duplicate the doping level of the sputtering target. Study of p-type doped nc-Si films showed that the fabrication of Schottky diodes on nc-Si films made from an extremely high-doped target (∼1020 cm-3) or low-doped target (∼1015cm-3) was not successful. For highly doped p-type films, tunneling causes Ohmic conduction instead of rectifying conduction. For the nc-Si film deposited from a low-doped p-type target, the film shows conversion to n-type characteristics when measured by a hot probe. This might be due to defects or oxygen in the film. N-type films at the middle doping level (∼1017cm-3) gave good Schottky diodes after annealing the film in forming gas at 700°C. The Schottky diodes fabricated by high work-function metal (Au) gave the rectifying ratio of ~∼103. Several techniques, e.g. slow/fast two-step sputtering at low working pressure and surface polishing, were used to improve the photo response of Schottky photodiodes. The open-circuit voltage (Voc) of 0.164V and short-circuit current density (Jsc) of 2.5 mA/cm2 were achieved under 100mW/cm2 illumination.


2005 ◽  
Vol 862 ◽  
Author(s):  
Koeng Su Lim ◽  
Joong Hwan Kwak ◽  
Seong Won Kwon ◽  
Seung Yeop Myong

AbstractWe have developed highly stabilized (p-i-n)-type protocrystalline silicon (pc-Si:H) multilayer solar cells. However, the source of the superior light-induced stability of the pc-Si:H multilayer absorbers compared to conventional amorphous silicon (a-Si:H) absorbers remains unclear. Photoluminescence (PL) and Fourier transform infrared (FTIR) spectroscopy measured at room temperature produce strong evidence that nano-sized silicon grains embedded in regularly arranged highly H2-diluted sublayers suppress the photocreation of dangling bonds. To achieve a high conversion efficiency, we applied a double-layer p-type amorphous siliconcarbon alloy (p-a-Si1-xCx:H) structure to the pc-Si:H multilayer solar cells. The less pronounced initial short wavelength quantum efficiency variation as a function of bias voltage, and the wide overlap of dark current - voltage (JD-V) and short-circuit current - open-circuit voltage (Jsc-Voc) characteristics prove that the double p-a-Si1-xCx:H layer structure successfully reduces recombination at the p/i interface. Thus, we achieved a highly stabilized efficiency of 9.0 % without any back reflector.


2021 ◽  
Vol 877 (1) ◽  
pp. 012001
Author(s):  
Marwah S Mahmood ◽  
N K Hassan

Abstract Perovskite solar cells attract the attention because of their unique properties in photovoltaic cells. Numerical simulation to the structure of Perovskite on p-CZTS/p-CH3NH3PbCI3/p-CZTS absorber layers is performed by using a program solar cell capacitance simulator (SCAPS-1D), with changing absorber layer thickness. The effect of thickness p-CZTS/p-CH3NH3PbCI3/p-CZTS, layers at (3.2μm, 1.8 μm, 1.1 μm) respectively are studied. The obtained results are short circuit current density (Jsc ), open circuit voltage (V oc), fill factor (F. F) and power conversion efficiency (PCE) equal to (28 mA/cm2, 0.83 v, 60.58 % and 14.25 %) respectively at 1.1 μm thickness. Our findings revealed that the dependence of current - voltage characteristics on the thickness of the absorbing layers, an increase in the amount of short circuit current density with an increase in the thickness of the absorption layers and thus led to an increase in the conversion efficiency and improvement of the cell by increasing the thickness of the absorption layers.


2006 ◽  
Vol 915 ◽  
Author(s):  
Tayyar Dzhafarov ◽  
Cigdem Oruc Lus ◽  
Sureyya AYDIN ◽  
Emel Cingi

AbstractIn this work we present data on investigation of the current-voltage and capacitance characteristics of Au/PS Schottky type structures in the presence of different hydrogen-containing solutions (glucose, ethanol, methanol, boric acid, sodium tetraborate pentahydrate, sodium borohydride, benzine, KOH). Generation of the open-circuit voltage and short-circuit current density and capacitance up to 0.55 V, 25 mA/cm2 and 1μF respectively on placing of Au/PS structures in these solutions was discovered. This effect is mainly caused by hydrogen component of solutions. The possible mechanism generation of voltage and capacitance in metal/PS sensors hydrogen-containing solutions is suggested. The advantage of metal/PS Schottky type sensors consists in working without applying external electricity.


2011 ◽  
Vol 399-401 ◽  
pp. 1477-1480
Author(s):  
Yan Li Xu ◽  
Jin Hua Li

n-ZnO thin films doped In with 2 atm.% were deposited on p-type silicon wafer with textured surface by Ion Beam Enhanced Deposition method, after annealing and prepared front and back electrodes, the n-ZnO/p-Si heterojunction samples were fabricated. The photoelectric property of the sample were measured and compared with silicon solar cell. The result indicated the saturated photocurrent of n-ZnO/p-Si heterojunction was 20% greater than one of the Si solar cell. It means the ZnO/Si heterojunction has a higher ability of produce photoelectron then one of silicon solarcell. The result of the photovoltaic test of n-ZnO/p-Si heterojunction show The open circuit voltage and short-circuit current of the n-ZnO/p-Si heterojunction was 400mV and 5.5mA/cm2 respectively. It was much smaller than the one of silicon solar cells. The reason was discussed


2005 ◽  
Vol 12 (03) ◽  
pp. 343-350 ◽  
Author(s):  
M. RUSOP ◽  
T. SOGA ◽  
T. JIMBO

The successful deposition of boron ( B )-doped p-type ( p-C:B ) and phosphorous ( P )-doped n-type ( n-C:P ) carbon ( C ) films, and fabrication of p-C:B on silicon ( Si ) substrate ( p-C:B/n-Si ) and n-C:P/p-Si cells by the technique of pulsed laser deposition (PLD) using graphite target is reported. The cells' performances are represented in the dark I–V rectifying curve and I–V working curve under illumination when exposed to AM 1.5 illumination condition (100 mW/cm2, 25°C). The open circuit voltage (V oc ) and short circuit current density (J sc ) for p-C:B/n-Si are observed to vary from 230–250 mV and 1.5–2.2 mA/cm2, respectively, and to vary from 215–265 mV and 7.5–10.5 mA/cm2, respectively, for n-C:P/p-Si cells. The p-C:B/n-Si cell fabricated using the target with the amount of B by 3 Bwt% shows highest energy conversion efficiency, η = 0.20%, and fill factor, FF = 45%, while, the n-C:P/p-Si cell with the amount of P by 7 Pwt% shows highest energy conversion efficiency, η = 1.14%, and fill factor, FF = 41%. The quantum efficiencies (QE) of the p-C:B/n-Si and n-C:P/p-Si cells are observed to improve with Bwt% and Pwt%, respectively. The contributions of QE are suggested to be due to photon absorption by carbon layer in the lower wavelength region (below 750 nm) and Si substrates in the higher wavelength region. The dependence of B and P content on the electrical and optical properties of the deposited films, and the photovoltaic characteristics of the respective p-C:B/n-Si and n-C:P/p-Si heterojunction photovoltaic cells, are discussed.


2018 ◽  
Vol 9 ◽  
pp. 3 ◽  
Author(s):  
Xianghua Zhang ◽  
Ilia Korolkov ◽  
Bo Fan ◽  
Michel Cathelinaud ◽  
Hongli Ma ◽  
...  

In this work, we present for the first time the concept of chalcogenide glass-ceramic for photovoltaic applications with the GeSe2–Sb2Se3–CuI system. It has been demonstrated that thin films, deposited with the sputtering technique, are amorphous and can be crystallized with appropriate heat treatment. The thin film glass-ceramic behaves as a p-type semiconductor, even if it contains p-type Cu2GeSe3and n-type Sb2Se3. The conductivity of Sb2Se3has been greatly improved by appropriate iodine doping. The first photovoltaic solar cells based on the association of iodine-doped Sb2Se3and the glass-ceramic thin films give a short-circuit current density JSCof 10 mA/cm2and an open-circuit voltage VOCof 255 mV, with a power conversion efficiency of about 0.9%.


2021 ◽  
Vol 22 (2) ◽  
pp. 135-148
Author(s):  
Abdul Halim Ikram Mohamed ◽  
Mohd Lukman Inche Ibrahim

We investigate how an enhanced light absorption at a specific position inside the active layer affects the performance of organic photovoltaic cells (OPVs), namely the short-circuit current density ( ), the open-circuit voltage ( ), the fill factor (FF), and the power conversion efficiency (PCE). The performance is calculated using an updated version of a previously published analytical current-voltage model for OPVs, where the updated model allows the light absorption profile to be described by any functions provided that analytical solutions can be produced. We find that the light absorption profile affects the performance through the drift current. When the mobility imbalance is not very high (when the ratio of the mobility of the faster carrier type to the mobility of the slower carrier type is less than about ), the PCE is maximized when the light absorption is concentrated at the center of the active layer. When the mobility imbalance is very high (when the ratio of the mobility of the faster carrier type to the mobility of the slower carrier type is more than approximately ), the PCE is maximized when the light absorption is concentrated near the electrode collecting the slower carrier type. Therefore, it is important to ensure that the light absorption profile is properly tuned so that the performance of OPVs is maximized. Moreover, any efforts that we make to improve the performance should not lead to a light absorption profile that would actually impair the overall performance. ABSTRAK: Kajian ini menilai bagaimana penyerapan cahaya yang tinggi pada bahagian tertentu lapisan aktif mempengaruhi prestasi sel fotovoltaik organik (OPV), iaitu ketumpatan arus litar pintas (Jsc), voltan litar terbuka (Voc), faktor pengisian (FF), dan kecekapan penukaran kuasa (PCE). Prestasi dikira mengguna pakai model terkini yang diperbaharui dari model asal analitikal OPV voltan-arus, di mana model ini membenarkan mana-mana profil penyerapan cahaya digunakan asalkan penyelesaian analitikal terhasil.  Dapatan kajian mendapati profil penyerapan cahaya mempengaruhi prestasi berdasarkan arus hanyut. Apabila ketidakseimbangan pergerakan caj tidak begitu tinggi (di mana nisbah pergerakan pembawa caj laju kepada perlahan adalah kurang daripada 103), PCE menjadi maksimum jika penyerapan cahaya bertumpu pada tengah lapisan aktif. Apabila ketidakseimbangan pergerakan caj sangat tinggi (di mana nisbah pergerakan pembawa caj laju kepada perlahan adalah lebih daripada 104), PCE menjadi maksimum jika penyerapan cahaya bertumpu pada elektrod yang mengutip pembawa caj perlahan. Oleh itu, kedudukan talaan profil penyerapan cahaya yang tepat adalah sangat penting bagi menentukan prestasi OPV dimaksimumkan. Tambahan, apa sahaja usaha penambahbaikan prestasi seharusnya tidak menyebabkan pengurangan keseluruhan prestasi profil penyerapan cahaya.


2020 ◽  
Vol 25 (1) ◽  
pp. 1-7
Author(s):  
Mohammed Sami Abd ali ◽  
Ahmed Shaker Hussein ◽  
Hayder Mohammed hadi

ABSTRACT:   In this work was measured characteristics (current - voltage) for the  (fe2o3 )thin films . The characteristics of the current density-voltage(J-V) were calculated at in both dark and light (100 mw/cm2) conditions. The parameters for this research of the photovoltaic samples, that is, were obtained directly from the curves of the resulting characteristics on the basic variables for the solar cell: the short circuit current density  (Jsc‏  ( ‏ , saturation current (Jo ), open-circuit voltage  (Voc) , fill factor ( FF), and efficiency of solar energy conversion (yield) ƞ ,


Sign in / Sign up

Export Citation Format

Share Document