Computational Fluid Dynamics Modeling of Mixed Convection Flows in Building Enclosures

Author(s):  
Alexander Kayne ◽  
Ramesh Agarwal

In recent years Computational Fluid Dynamics (CFD) simulations are increasingly used to model the air circulation and temperature environment inside the rooms of residential and office buildings to gain insight into the relative energy consumptions of various HVAC systems for cooling/heating for climate control and thermal comfort. This requires accurate simulation of turbulent flow and heat transfer for various types of ventilation systems using the Reynolds-Averaged Navier-Stokes (RANS) equations of fluid dynamics. Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS) of Navier-Stokes equations is computationally intensive and expensive for simulations of this kind. As a result, vast majority of CFD simulations employ RANS equations in conjunction with a turbulence model. In order to assess the modeling requirements (mesh, numerical algorithm, turbulence model etc.) for accurate simulations, it is critical to validate the calculations against the experimental data. For this purpose, we use three well known benchmark validation cases, one for natural convection in 2D closed vertical cavity, second for forced convection in a 2D rectangular cavity and the third for mixed convection in a 2D square cavity. The simulations are performed on a number of meshes of different density using a number of turbulence models. It is found that k-epsilon two-equation turbulence model with a second-order algorithm on a reasonable mesh gives the best results. This information is then used to determine the modeling requirements (mesh, numerical algorithm, turbulence model etc.) for flows in 3D enclosures with different ventilation systems. In particular two cases are considered for which the experimental data is available. These cases are (1) air flow and heat transfer in a naturally ventilated room and (2) airflow and temperature distribution in an atrium. Good agreement with the experimental data and computations of other investigators is obtained.

Author(s):  
Sulfickerali Noor Mohamed ◽  
John W. Chew ◽  
Nicholas J. Hills

Previous studies have indicated some differences between steady computational fluid dynamics (CFD) predictions of flow in a rotor–stator disk cavity with rotating bolts compared to measurements. Recently, time-dependent CFD simulations have revealed the unsteadiness present in the flow and have given improved agreement with measurements. In this paper, unsteady Reynolds averaged Navier–Stokes (URANS) 360 deg model CFD calculations of a rotor–stator cavity with rotor bolts were performed in order to better understand the flow and heat transfer within a disk cavity previously studied experimentally by other workers. It is shown that the rotating bolts generate unsteadiness due to wake shedding which creates time-dependent flow patterns within the cavity. At low throughflow conditions, the unsteady flow significantly increases the average disk temperature. A systematic parametric study is presented giving insight into the influence of number of bolts, mass flow rate, cavity gap ratio, and the bolts-to-shroud gap ratio on the time-dependent flow within the cavity.


Author(s):  
Willy L. Duffle ◽  
Evan C. Lemley

While laminar flow heat transfer and mixing in microfluidic geometries has been investigated experimentally, as has the effect of geometry-induced turbulence in microfluidic flow (it is well documented that turbulence increases convective heat transfer in macrofluidic flow), little literature exists investigating the effect of electrokinetically-induced turbulence on heat transfer at the micro scale. Using recently observed experimental data, this work employed computational fluid dynamics coupled with electromagnetic simulations to determine if electrokinetically-forced, low-Reynolds number turbulence could be observed in a rectangular microchannel with using Newtonian fluids. Analysis of the results was done via comparison to the experimental criteria defined for turbulent flow. This work shows that, even with a simplified simulation setup, computational fluid dynamics (CFD) software can produce results comparable to experimental observations of low-Reynolds turbulence in microchannels using Newtonian fluids. In addition to comparing simulated velocities and turbulent energies to experimental data this work also presents initial data on the effects of electrokinetic forcing on microfluidic flow based on entropy generation rates.


2021 ◽  
Author(s):  
Rajendra Prasad K S ◽  
Krishna V ◽  
Sachin Bharadwaj ◽  
Babu Rao Ponangi

Abstract Modelling of turbulence heat transfer for supercritical fluids using Computational Fluid Dynamics (CFD) software is always challenging due to the drastic property variations near critical point. Use of Artificial Neural Networks (ANN) along with numerical methods have shown promising results in predicting heat transfer coefficients of heat exchangers. In this study, accuracy of four different turbulent models available in the commercial CFD software - Ansys Fluent is investigated against the available experimental results. The k-e Re Normalization Group (RNG) model with enhanced wall treatment is found to be the best-suited turbulence model. Further, K-e RNG Turbulence Model is used in CFD for parametric analysis to generate the data for ANN studies. A total of 1,34,698 data samples were generated and fed into the ANN program to develop an equation that can predict the heat transfer coefficient. It was found that, for the considered range of values the absolute average relative deviation is 3.49%.


Author(s):  
Malwina Gradecka ◽  
Roman Thiele ◽  
Henryk Anglart

This paper presents a steady-state computational fluid dynamics approach to supercritical water flow and heat transfer in a rod bundle with grid spacers. The current model was developed using the ANSYS Workbench 15.0 software (CFX solver) and was first applied to supercritical water flow and heat transfer in circular tubes. The predicted wall temperature was in good agreement with the measured data. Next, a similar approach was used to investigate three-dimensional (3D) vertical upward flow of water at supercritical pressure of about 25 MPa in a rod bundle with grid spacers. This work aimed at understanding thermo- and hydrodynamic behavior of fluid flow in a complex geometry at specified boundary conditions. The modeled geometry consisted of a 1.5-m heated section in the rod bundle, a 0.2-m nonheated inlet section, and five grid spacers. The computational mesh was prepared using two cell types. The sections of the rods with spacers were meshed using tetrahedral cells due to the complex geometry of the spacer, whereas sections without spacers were meshed with hexahedral cells resulting in a total of 28 million cells. Three different sets of experimental conditions were investigated in this study: a nonheated case and two heated cases. The nonheated case, A1, is calculated to extract the pressure drop across the rod bundle. For cases B1 and B2, a heat flux is applied on the surface of the rods causing a rise in fluid temperature along the bundle. While the temperature of the fluid increases along with the flow, heat deterioration effects can be present near the heated surface. Outputs from both B cases are temperatures at preselected locations on the rods surfaces.


2014 ◽  
Vol 136 (8) ◽  
Author(s):  
Eduard Amromin

Various computational fluid dynamics (CFD) models employed for cavitating flows are substantially based on semi-empirical assumptions about cavitation forms and liquid flows around cavitating bodies. Therefore, the model applicability must be validated with experimental data. The stages of validation of the models are analyzed here with data on cavitating hydrofoils and axisymmetric bodies in water. Results of Reynolds-averaged Navier–Stokes (RANS), large-eddy simulation (LES), detached-eddy simulation (DES), and viscous-inviscid interaction methods are compared. The necessity of simultaneous validation of several flow parameters (as cavitation inception number and location of the appearing cavity) is pointed out. Typical uncertainties in water tunnel model test data (water quality, simplified account of wall effect) and possibilities to take them into account are also discussed. The provided comparison with experimental data manifests the impossibility to describe initial stages of cavitating flows using any single model and importance of employment of a combination of models for both the cavitation zones and the flow outside of cavities.


Author(s):  
Yi Liu ◽  
Lu Zou ◽  
Zao-Jian Zou

Understanding the manoeuvring performance of a ship requires accurate predictions of the hydrodynamic forces and moments on the ship. In the present study, the hydrodynamic forces and moments on a manoeuvring container ship at various rudder and drift angles are numerically predicted by solving the unsteady Reynolds-averaged Navier–Stokes equations. The effects of dynamic sinkage and trim on the hydrodynamic forces are first investigated together with a grid dependency study to estimate the numerical error and uncertainty caused by grid discretization, and with a validation study combining the experimental data. The results show that the effect of dynamic sinkage and trim is non-negligible, since including it improves the hydrodynamic force predictions and reduces the numerical error and uncertainty, and the averaged error and uncertainty are smaller than the other computational fluid dynamics results where sinkage and trim were fixed with given values from model tests. Therefore, it is included in the subsequent systematic simulations regarding the influence of rudder and drift angles. The computed forces, moments and rudder coefficients at different rudder and drift angles on the container ship are compared with the benchmark model test data. From the computations, all the predicted quantities are in satisfactory agreement with the experimental data. The details of the flow filed and hydrodynamic forces, such as pressure distributions, transverse force distributions along the hull, velocity contours, streamlines and wave patterns are presented and discussed, and a deep insight into the physical mechanism in the hydrodynamic forces on a manoeuvring ship is obtained.


Author(s):  
Stefan D. Mihić ◽  
Sorin Cioc ◽  
Ioan D. Marinescu ◽  
Michael C. Weismiller

This paper introduces a set of research oriented computational fluid dynamics (CFD) 3D models used to simulate the fluid flow and heat transfer in a grinding process. The most important features of these models are described and some representative simulation results are presented, along with comparisons to published experimental data. Distributions of temperatures, pressures, velocities, and liquid volume fractions in and around the grinding region are obtained in great detail. Such results are essential in studying the influence of the fluid on the grinding process, as well as in determining the best fluid composition and supply parameters for a given application. The simulation results agree well with experimental global flow rates, temperature, and pressure values, showing the feasibility of CFD simulations in grinding applications.


2019 ◽  
Vol 5 (4) ◽  
Author(s):  
Ganesh Lal Kumawat ◽  
Anuj Kumar Kansal ◽  
Naresh Kumar Maheshwari ◽  
Avaneesh Sharma

The clearance between fuel rods is maintained by spacer grid or helical wire wrap. Thermal-hydraulic characteristics inside fuel rod bundle are strongly influenced by the spacer grid geometry and the bundle pitch-to-diameter (P/D) ratio. This includes the maximum fuel temperature, critical heat flux, as well as pressure drop through the fuel bundle. An understanding of the detailed structure of flow mixing and heat transfer in a fuel rod bundle geometry is therefore an important aspect of reactor core design, both in terms of the reactor's safe and reliable operation, and with regard to optimum power extraction. In this study, computational fluid dynamics (CFD) simulations are performed to investigate isothermal turbulent flow mixing and heat transfer behavior in 4 × 4 rod bundle with twist-vane spacer grid with P/D ratio of 1.35. This work is carried out under International Atomic Energy Agency (IAEA) co-ordinated research project titled as “Application of Computational Fluid Dynamics (CFD) Codes for Nuclear Power Plant Design.” CFD simulations are performed using open source CFD code OpenFOAM. Numerical results are compared with experimental data from Korea Atomic Energy Research Institute (KAERI) and found to be in good agreement.


Sign in / Sign up

Export Citation Format

Share Document