Application of Film Cooling to an Unshrouded High-Pressure Turbine Casing

2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Matthew Collins ◽  
Kamaljit Chana ◽  
Thomas Povey

In this paper, we describe the design, modeling, and experimental testing of a film cooling scheme employed on an unshrouded high-pressure (HP) rotor casing. The casing region has high thermal loads at both low and high frequency, with the flow being dominated by the potential field of the rotor and over-tip leakage flows. Increasingly high turbine entry temperatures necessitate internal and film cooling of the casing to ensure satisfactory service life and performance. There are, however, very few published studies presenting computational fluid dynamics (CFD) and experimental data for cooled rotor casings. Experimental testing was performed on a film-cooled rotor casing in the Oxford Turbine Research Facility (OTRF)—a rotating transonic facility of engine scale. Unsteady CFD of an HP rotor blade row with a film-cooled casing was undertaken, uniquely with a domain utilizing a sliding interface in the tip gap. A high density array of thin film heat flux gauges (TFHFGs) was used to obtain time-resolved and time-mean results of adiabatic wall temperature and film cooling effectiveness on the film-cooled rotor casing between −30% and +125% rotor tip axial chord. Results are compared to CFD predictions, and mechanisms for interaction of the coolant with the rotor tip are proposed and discussed. Acoustic effects within casing coolant holes due to the passing of the rotor are demonstrated on a 3D CFD geometry, supporting conclusions drawn in earlier work by the authors on the importance of this effect in a casing film cooling system.

Author(s):  
Matthew Collins ◽  
Kamaljit Chana ◽  
Thomas Povey

In this paper we describe the design, modelling and experimental testing of a film cooling scheme employed on an unshrouded HP rotor casing. The casing region has high thermal loads at both low and high frequency, with the flow being dominated by the potential field of the rotor and over-tip leakage flows. Increasingly high turbine entry temperatures necessitate internal and film cooling of the casing to ensure satisfactory service life and performance. There are, however, very few published studies presenting CFD and experimental data for cooled rotor casings. Experimental testing was performed on a film cooled rotor casing in the Oxford Turbine Research Facility (OTRF) — a rotating transonic facility of engine scale. Unsteady CFD of a HP rotor blade row with a film cooled casing was performed with a domain utilizing a sliding interface in the tip gap. Specific advances in validation data and understanding include: 1. A discussion of the challenges faced in the design of a casing film cooling scheme. We show that the seemingly hostile film cooling environment can be managed with the use of holes shaped to utilize acoustic pressure wave reflections. 2. Time resolved and time averaged predictions of adiabatic film effectiveness on the rotor casing are presented. Mechanisms for interaction of the coolant with the rotor tip are proposed and discussed. 3. Acoustic effects due to the passing of the rotor are demonstrated on a 3D CFD geometry, supporting conclusions drawn by Collins and Povey [1] on the importance of this effect in a casing film cooling system. 4. Time-resolved and time-mean measurements of TAW and η’ taken using a high density array of thin film heat flux gauges are presented and compared to CFD predictions for the casing region (−30 % to +125 % CAX).


Author(s):  
Qiang Zhao ◽  
Xing Yang ◽  
Zhao Liu ◽  
Zhenping Feng ◽  
Terrence W. Simon

Abstract In modern gas turbine engines, the rotor casing region experiences high thermal loads due to complex flow structures and aerothermal effects. Thus, casing cooling is one of essential measures to ensure turbine service lifetime and performance. However, studies on heat transfer and cooling over the rotor casing with tip leakage flows are limited in the open literature during the past decades. The present work aims at controlling leakage flows over the blade tip and decreasing heat loads on the rotor casing. A novel approach proposed in a companion paper (GT2019-90232) is adopted in this paper as Part II by introducing an air-curtain injection from the rotor casing through a pair of inclined rows of discrete holes positioned in the range of 30% and 50% axial chord downstream of the blade leading edge in the casing. This air-curtain injection approach is applied to flat and recessed tips with and without tip injection to evaluate its sealing capability on tip leakage flows and film cooling effectiveness on the casing for two injection ratios of 0.7% and 1.0%. In this paper, Reynolds-averaged Navier-Stokes (RANS) simulations with Shear Stress Transport (SST) k-ω turbulence model and γ-Reθ transition model, which are validated with relevant experimental data, are performed to investigate tip leakage flows and film cooling effectiveness on the casing in a single-stage, high-pressure gas turbine engine. Results show that casing injection can reduce tip leakage mass flow effectively by changing the development and migration of tip leakage mass flows, especially when the recessed tip is applied. Adding tip injection would further reduces the tip leakage. The casing injection also provides an excellent cooling effect on the casing across rotor middle chord through trailing edge regions. In the presence of the recessed tip, coolant spreads out well on the rotor tip and the casing surfaces, resulting in better film cooling effectiveness on the casing over rotor tip leading edge. In addition, the tip injection could provide an extra cooling effect in some other regions of the casing.


2004 ◽  
Vol 126 (2) ◽  
pp. 247-258 ◽  
Author(s):  
John P. C. W. Ling ◽  
Peter T. Ireland ◽  
Lynne Turner

New techniques for processing transient liquid crystal heat transfer experiment have been developed. The methods are able to measure detailed local heat transfer coefficient and adiabatic wall temperature in a three temperature system from a single transient test using the full intensity history recorded. Transient liquid crystal processing methods invariably assume that lateral conduction is negligible and so the heat conduction process can be considered one-dimensional into the substrate. However, in regions with high temperature variation such as immediately downstream of a film-cooling hole, it is found that lateral conduction can become significant. For this reason, a procedure which allows for conduction in three dimensions was developed by the authors. The paper is the first report of a means of correcting data from the transient heat transfer liquid crystal experiments for the effects of significant lateral conduction. The technique was applied to a film cooling system as an example and a detailed uncertainty analysis performed.


Author(s):  
Joao Vieira ◽  
John Coull ◽  
Peter Ireland ◽  
Eduardo Romero

Abstract High pressure turbine blade tips are critical for gas turbine performance and are sensitive to small geometric variations. For this reason, it is increasingly important for experiments and simulations to consider real geometry features. One commonly absent detail is the presence of welding beads on the cavity of the blade tip, which are an inherent by-product of the blade manufacturing process. This paper therefore investigates how such welds affect the Nusselt number, film cooling effectiveness and aerodynamic performance. Measurements are performed on a linear cascade of high pressure turbine blades at engine realistic Mach and Reynolds numbers. Two cooled blade tip geometries were tested: a baseline squealer geometry without welding beads, and a case with representative welding beads added to the tip cavity. Combinations of two tip gaps and several coolant mass flow rates were analysed. Pressure sensitive paint was used to measure the adiabatic film cooling effectiveness on the tip, which is supplemented by heat transfer coefficient measurements obtained via infrared thermography. Drawing from all of this data, it is shown that the weld beads have a generally detrimental impact on thermal performance, but with local variations. Aerodynamic loss measured downstream of the cascade is shown to be largely insensitive to the weld beads.


Author(s):  
C. P. Lee ◽  
J. C. Han

The effect of heat transfer on film cooling has been studied analytically. The proposed model shows that the non-adiabatic film cooling effectiveness will increase with increasing of the heat transfer parameter, Ū / (ρVCp)2, on the convex, the flat and the concave walls over the entire range of film cooling parameter, X/MS. On the convex wall with a blowing rate, M, of 0.51 and a heat transfer parameter of 10−3 at the typical engine conditions, the non-adiabatic effectiveness can be higher than the adiabatic effectiveness by 45% at a film cooling parameter of 103; while the film temperature can be lower than the adiabatic wall by 18°C (32°F) at a dimensionless distance of 500. The model can be extended and applied to the heat transfer analysis for any kind of turbine blade with film cooling.


Author(s):  
M. Gritsch ◽  
A. Schulz ◽  
S. Wittig

This paper presents detailed measurements of the film-cooling effectiveness for three single, scaled-up film-cooling hole geometries. The hole geometries investigated include a cylindrical hole and two holes with a diffuser shaped exit portion (i.e. a fanshaped and a laidback fanshaped hole). The flow conditions considered are the crossflow Mach number at the hole entrance side (up to 0.6), the crossflow Mach number at the hole exit side (up to 1.2), and the blowing ratio (up to 2). The coolant-to-mainflow temperature ratio is kept constant at 0.54. The measurements are performed by means of an infrared camera system which provides a two-dimensional distribution of the film-cooling effectiveness in the nearfield of the cooling hole down to x/D = 10. As compared to the cylindrical hole, both expanded holes show significantly improved thermal protection of the surface downstream of the ejection location, particularly at high blowing ratios. The laidback fanshaped hole provides a better lateral spreading of the ejected coolant than the fanshaped hole which leads to higher laterally averaged film-cooling effectiveness. Coolant passage crossflow Mach number and orientation strongly affect the flowfield of the jet being ejected from the hole and, therefore, have an important impact on film-cooling performance.


Author(s):  
Duccio Griffini ◽  
Massimiliano Insinna ◽  
Simone Salvadori ◽  
Francesco Martelli

A high-pressure vane equipped with a realistic film-cooling configuration has been studied. The vane is characterized by the presence of multiple rows of fan-shaped holes along pressure and suction side while the leading edge is protected by a showerhead system of cylindrical holes. Steady three-dimensional Reynolds-Averaged Navier-Stokes (RANS) simulations have been performed. A preliminary grid sensitivity analysis with uniform inlet flow has been used to quantify the effect of spatial discretization. Turbulence model has been assessed in comparison with available experimental data. The effects of the relative alignment between combustion chamber and high-pressure vanes are then investigated considering realistic inflow conditions in terms of hot spot and swirl. The inlet profiles used are derived from the EU-funded project TATEF2. Two different clocking positions are considered: the first one where hot spot and swirl core are aligned with passage and the second one where they are aligned with the leading edge. Comparisons between metal temperature distributions obtained from conjugate heat transfer simulations are performed evidencing the role of swirl in determining both the hot streak trajectory within the passage and the coolant redistribution. The leading edge aligned configuration is resulted to be the most problematic in terms of thermal load, leading to increased average and local vane temperature peaks on both suction side and pressure side with respect to the passage aligned case. A strong sensitivity of both injected coolant mass flow and heat removed by heat sink effect has also been highlighted for the showerhead cooling system.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Nathan Rogers ◽  
Zhong Ren ◽  
Warren Buzzard ◽  
Brian Sweeney ◽  
Nathan Tinker ◽  
...  

Experimental results are presented for a double wall cooling arrangement which simulates a portion of a combustor liner of a gas turbine engine. The results are collected using a new experimental facility designed to test full-coverage film cooling and impingement cooling effectiveness using either cross flow, impingement, or a combination of both to supply the film cooling flow. The present experiment primarily deals with cross flow supplied full-coverage film cooling for a sparse film cooling hole array that has not been previously tested. Data are provided for turbulent film cooling, contraction ratio of 1, blowing ratios ranging from 2.7 to 7.5, coolant Reynolds numbers based on film cooling hole diameter of about 5000–20,000, and mainstream temperature step during transient tests of 14 °C. The film cooling hole array consists of a film cooling hole diameter of 6.4 mm with nondimensional streamwise (X/de) and spanwise (Y/de) film cooling hole spacing of 15 and 4, respectively. The film cooling holes are streamwise inclined at an angle of 25 deg with respect to the test plate surface and have adjacent streamwise rows staggered with respect to each other. Data illustrating the effects of blowing ratio on adiabatic film cooling effectiveness and heat transfer coefficient are presented. For the arrangement and conditions considered, heat transfer coefficients generally increase with streamwise development and increase with increasing blowing ratio. The adiabatic film cooling effectiveness is determined from measurements of adiabatic wall temperature, coolant stagnation temperature, and mainstream recovery temperature. The adiabatic wall temperature and the adiabatic film cooling effectiveness generally decrease and increase, respectively, with streamwise position, and generally decrease and increase, respectively, as blowing ratio becomes larger.


2021 ◽  
Author(s):  
Patrick R. Jagerhofer ◽  
Marios Patinios ◽  
Tobias Glasenapp ◽  
Emil Göttlich ◽  
Federica Farisco

Abstract Due to stringent environmental legislation and increasing fuel costs, the efficiencies of modern turbofan engines have to be further improved. Commonly, this is facilitated by increasing the turbine inlet temperatures in excess of the melting point of the turbine components. This trend has reached a point where not only the high-pressure turbine has to be adequately cooled, but also components further downstream in the engine. Such a component is the turbine center frame (TCF), having a complex aerodynamic flow field that is also highly influenced by purge-mainstream interactions. The purge air, being injected through the wheelspace cavities of the upstream high-pressure turbine, bears a significant cooling potential for the TCF. Despite this, fundamental knowledge of the influencing parameters on heat transfer and film cooling in the TCF is still missing. This paper examines the influence of purge-to-mainstream blowing ratio, purge-to-mainstream density ratio and purge flow swirl angle on the convective heat transfer coefficient and the film cooling effectiveness in the TCF. The experiments are conducted in a sector-cascade test rig specifically designed for such heat transfer studies using infrared thermography and tailor-made flexible heating foils with constant heat flux. The inlet flow is characterized by radially traversing a five-hole-probe. Three purge-to-mainstream blowing ratios and an additional no purge case are investigated. The purge flow is injected without swirl and also with engine-similar swirl angles. The purge swirl and blowing ratio significantly impact the magnitude and the spread of film cooling in the TCF. Increasing blowing ratios lead to an intensification of heat transfer. By cooling the purge flow, a moderate variation in purge-to-mainstream density ratio is investigated, and the influence is found to be negligible.


Author(s):  
Mael Harnieh ◽  
Nicolas Odier ◽  
Jérôme Dombard ◽  
Florent Duchaine ◽  
Laurent Gicquel

Abstract Film cooling is commonly used to protect turbine vanes and blades from the hot gases produced in the combustion chamber. The design and optimization of these systems can however only be achieved if a precise prediction of the fluid mechanics and film efficiency is guaranteed at a level where induced losses are fully mastered. Such a prerequisite induces at the numerical level to be able to identify and assess losses. In this context, the present study addresses loss assessment in a wall-resolved Large Eddy Simulation (LES) of the film-cooled high-pressure turbine blade cascade T120D from the European project AITEB II. The objectives are twofolds: (1) to evaluate the capacity of LES to predict adiabatic film cooling effectiveness in a mastered academic case; and (2) to investigate loss generation mechanisms in a fully anisothermal configuration. When it comes to LES predictions of T120D, the flow structure around the blade and the coolant jet organization are coherent with literature findings. Satisfactory agreements are furthermore retrieved for the pressure load prediction as well as the adiabatic film effectiveness if compared to the experiment. Loss generation is then investigated illustrating the fact that aerodynamics losses dominate mixing losses which are mainly located in the coolant film. This is in line with the temperature difference between the hot and coolant flows that is low for this experimental condition. Distinct contributions can however be made available by studying the local loss generation maps by means of Second Law Analysis if recast in the specific context of anisothermal flows when simulated by LES.


Sign in / Sign up

Export Citation Format

Share Document