scholarly journals Control of Tip Leakage in a High-Pressure Turbine Cascade Using Tip Blowing

2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Ralph J. Volino

Blowing from the tip of a turbine blade was studied experimentally to determine if total pressure loss could be reduced. Experiments were done with a linear cascade in a low-speed wind tunnel. Total pressure drop through the blade row and secondary velocity fields in the passage between two blades were measured. Cases were documented with various blowing hole configurations on flat and squealer tipped blades. Blowing normal to the tip was not helpful and in some cases increased losses. Blowing from the bottom of a squealer cavity provided little benefit. With a flat tip, blowing from holes located near and inclined toward the pressure side generally reduced total pressure drop by reducing the effect of the tip leakage vortex. Holes near the axial location of maximum loading were most helpful, while holes closer to the leading and trailing edges were not as effective. Higher jet velocity resulted in larger total pressure drop reduction. With a tip gap of 1.5% of axial chord, jets with a velocity 1.5 times the cascade inlet velocity had a significant effect. A total pressure drop reduction of the order 20% was possible using a jet mass flow of about 0.4% of the main flow. Jets were most effective with smaller tip gaps, as they were more able to counter the leakage flow.

Author(s):  
Ralph J. Volino

Blowing from the tip of a turbine blade was studied experimentally to determine if total pressure loss could be reduced. Experiments were done with a linear cascade in a low speed wind tunnel. Total pressure drop through the blade row and secondary velocity fields in the passage between two blades were measured. Cases were documented with various blowing hole configurations on flat and squealer tipped blades. Blowing normal to the tip was not helpful, and in some cases increased losses. Blowing from the bottom of a squealer cavity provided little benefit. With a flat tip, blowing from holes located near and inclined toward the pressure side generally reduced total pressure drop by reducing the effect of the tip leakage vortex. Holes near the axial location of maximum loading were most helpful, while holes closer to the leading and trailing edges were not as effective. Higher jet velocity resulted in larger total pressure drop reduction. With a tip gap of 1.5% of axial chord, jets with a velocity 1.5 times the cascade inlet velocity had a significant effect. A total pressure drop reduction of the order 20% was possible using a jet mass flow of about 0.4% of the main flow. Jets were most effective with smaller tip gaps, as they were more able to counter the leakage flow.


Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 34
Author(s):  
Guoliang Hu ◽  
Feng Zhou ◽  
Lifan Yu

The main issue addressed in this paper involves the magnetorheological (MR) valve increasing the pressure drop by changing the internal structure, which leads to the increase of dimension sizes and the easy blocking of the internal channel. Optimizing the design of the traditional radial MR valve without changing the internal structure and whole dimension size is indispensable. Firstly, a radial MR valve with single excitation coil was proposed. The mathematical models of the field-dependent pressure drop and viscosity pressure drop in fluid flow channels were deduced, and the calculation formula of pressure drop was also established. Then, ANSYS software was used to simulate and analyze the distributions of the magnetic flux lines and magnetic flux densities of the proposed radial MR valve. Subsequently, the radial MR valve was simulated and analyzed by using the ANSYS first-order and zero-order simulation tools. In addition, the experimental test bench of the proposed MR valve was setup, the static performance of pressure drop was tested, and the change of pressure drop of the optimal radial MR valve under different loads was studied, furthermore, the response time with current of the initial and optimal radial MR valve were also investigated. Finally, the dynamic performances of the optimal radial MR valve controlled cylinder system under different currents, frequencies and amplitudes were tested, respectively. The experimental results indicate that the total pressure drop of the initial valve is 1.842 MPa when the applied current is 1.8 A, and the total pressure drop of the optimal valve is 2.58 MPa, the increase is 40.07%. Meanwhile, the maximum damping force of the optimal radial MR valve controlled cylinder system can reach about 3.6 kN at the current of 1.25 A, which shows a better optimization effect of the optimal radial MR valve.


2003 ◽  
Vol 29 (5) ◽  
pp. 701-706 ◽  
Author(s):  
Hidenori Ikeno ◽  
Yutaka Tada ◽  
Setsuro Hiraoka ◽  
Yusuke Shuto

2006 ◽  
Vol 129 (2) ◽  
pp. 436-442 ◽  
Author(s):  
Wang Qiuwang ◽  
Liang Hongxia ◽  
Xie Gongnan ◽  
Zeng Min ◽  
Luo Laiqin ◽  
...  

In recent years, the genetic algorithm (GA) technique has gotten much attention in solving real-world problems. This technique has a strong ability for global searching and optimization based on various objectives for their optimal parameters. The technique may be applied to complicated heat exchangers and is particularly useful for new types. It is important to optimize the heat exchanger, for minimum volume/weight, to save fabrication cost or for improved effectiveness to save energy consumption, under the requirement of allowable pressure drop; simultaneously it is mandatory to optimize geometry parameters of heating plate from technical and economic standpoints. In this paper, GA is used to optimize the cross wavy primary surface (CWPS) and cross corrugated primary surface (CCPS) geometry characteristic of recuperator in a 100kW microturbine, in order to get more compactness and minimum volume and weight. Two kinds of fitness assignment methods are considered. Furthermore, GA parameters are set optimally to yield smoother and faster fitness convergence. The comparison shows the superiority of GA and confirms its potential to solve the objective problem. When the rectangular recuperator core size and corrugated geometries are evaluated, in the CWPS the weight of the recuperator decreases by 12% or more; the coefficient of compactness increases by up to 19%, with an increase of total pressure drop by 0.84% compared to the original design data; and the total pressure drop versus the operating pressure is controlled to be less than 3%. In the CCPS area compactness is increased to 70% of the initial data by decreasing pitch and relatively high height of the passage, the weight decreases by 17–36%, depending on the inclination angle (θ). Comparatively the CCPS shows superior performance for use in compact recuperators in the future. The GA technique chooses from a variety of geometry characters, optimizes them and picks out the one which provides the closest fit to the recuperator for microturbine.


1985 ◽  
Vol 25 (02) ◽  
pp. 291-302 ◽  
Author(s):  
Noaman El-Khatib

Abstract A mathematical model is developed for waterfloodingperformance in linear stratified systems for both cases of noncommunicating layers with no crossflow and communicating layers with complete crossflow. The model accounts for variation of porosity and saturation inaddition to permeability of the different layers. The modelpredicts the fractional oil recovery, the water cut, the totalvolume injected, and the change in the total pressure drop, or the change in injection rate at the water breakthroughin the successive layers. A systematic procedure forordering of layers and performing calculations is outlined. Aprocedure for combining layers to avoid instability in the case of low mobility ratio is introduced. The developed model is applied to different examplesof stratified reservoirs. The effects of mobility ratio and crossflow between layers are discussed. The effects of variable porosity and fluid saturation are discussed also. It was found that crossflow between layers enhancesthe oil recovery for systems with favorable mobility ratios(lambda w/lambda o less than 1) and retards oil recovery for systems with unfavorable mobility ratios. It was found also that crossflow causes the effect of the mobility ratio on oil recovery to become more pronounced. The variation of porosity andfluid saturation with permeability is found to increase oilrecovery over that for the case of uniform porosity andsaturation for both favorable and unfavorable mobility ratios. Introduction Because of the variation in the depositional environments, oil-bearing formations usually exhibit random variationsin their petrophysical properties in both horizontal and vertical directions. Statistical as well as geological criteria usually are used to divide the pay zone betweenadjacent wells into a number of horizontal layers each with its own properties (k, phi, h, Swi, and Sor). Suchreservoirs usually are called "stratified," "layered,"or"heterogeneous" reservoirs. This variation in properties affects the performance of oil reservoirs during primary and secondary recovery processes. One of the significant factors influencingrecovery performance during waterflooding is thevariation of permeability in the vertical direction. In this case, the displacing fluid (water) tends to move faster in zones with higher permeabilities, causing earlier breakthrough of water into the producing wells and eventual by passing of some of the displaced fluid (oil). The various methods used for the prediction of waterflooding performance of stratified reservoirs differin the way the communication between the different layersis treated. Two ideal cases usually are used:completely noncommunicating layers andcommunicating layerswith complete crossflow. For actual stratified Systems, however, the layers are partially connected in the vertical direction, and the performance of the system lies betweenthose of the two ideal cases. For the case of noncommunicating stratified layers, the methods of Stiles and Dykstra-Parsons usually areused. Stiles' method assumes unit mobility ratio for the displacement process when computing the recovery but accounts for the mobility ratio when computing the WOR, which results in contradictory formulas for the performance. The Dykstra-Parsons method and its modified version by Johnson use semiempirical correlations based on log-normal distribution of the layers' permeability. Muskat presented analytical expressions for the performance of reservoirs having linear and exponential permeability distributions. Two methods are available in the literature forestimating the performance of communicating systems with complete crossflow the method of Warren and Cosgrove and that of Hearn. Warren and Cosgrove's method requires a log-normal permeability distribution. Furthermore, it ignores the problem of ordering of layersfor low mobility ratio, which may cause physicallymeaningless results. The method of Hearn is intended to derive pseudorelative permeability functions for the stratified system to be used in reservoir simulation. Most of these methods assume that all layers have identical properties except permeability. Also, the time is notrelated explicitly to the performance. Furthermore, noneof these methods considers the variation in injection rateand total pressure drop as the displacement process progresses. Although these points can be treated numerically for a particular case using reservoir simulation methods, the objective of this work is to developan alytical expressions for waterflooding performance inidealized linear stratified systems that will consider the previously mentioned points. Theoretical Analysis Assumption and Definitions. For both the noncommunicating and communicating systems, these assumptions are made. 1. The system is linear and horizontal, and the flow is incompressible, isothermal, and obeys Darcy's law. SPEJ P. 291^


Author(s):  
R. Willinger ◽  
H. Haselbacher

The tip-leakage losses in axial turbines with unshrouded rotor blades can account for as much as one third of the total losses. Various effects are influencing the tip-leakage flow and losses. This paper presents results of an experimental investigation concerning off-design incidences. Off-design incidences occur when the turbine operates at conditions different from the rated load condition. A low speed cascade wind tunnel has been used for the investigation. The geometry of the turbine cascade is an up-scale of the tip section of a low-pressure gas turbine rotor blade row (“Yaras–Sjolander cascade”) with a tip gap width of 2.5% of the chord length. The applied inlet flow angles consist of the design value as well as four off-design incidences in the range ±20°. Total pressures, static pressures and flow angles were obtained by traversing of a pneumatic five-hole probe in a plane about 0.3 axial chord lengths downstream of the turbine cascade. Based on the experimental results, a tip-leakage loss model is presented which can take into account off-design incidences. The model is applied to the present turbine cascade as well as to the turbine cascade of Yamamoto [1]. Due to its underlying concept, the model is able to predict, in addition to the losses, the flow underturning near the endwall caused by the tip-leakage vortex.


Author(s):  
Jiahui Jin ◽  
Yanping Song ◽  
Jianyang Yu ◽  
Fu Chen

Tip geometry modification is frequently used to suppress the tip leakage flow in the turbine cascade however a universally beneficial tip geometry modification design has not been fully discovered. In this paper, the two-surface coupling arbitrary blade tip design method in three-dimensional physical space which satisfies the simple trigonometric function law is proposed and the mathematical parametric description is presented. The effects of different arbitrary blade tips on tip leakage flow have been studied numerically in a highly loaded axial turbine cascade. The aerodynamic performance of different tips is assessed by the tip leakage mass flow rate and the total pressure loss coefficient at the exit section. The Kriging model and genetic optimization algorithm are used to optimize the arbitrary blade tips to obtain the optimal arbitrary blade tip. Compared with the flat tip, the tip leakage mass flow rate is decreased by 10.57% and the area-average total pressure loss coefficient at the exit section is reduced by 8.91% in the optimal arbitrary blade tip.


2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Yan Liu ◽  
Tian-Long Zhang ◽  
Min Zhang ◽  
Meng-Chao Zhang

A comparative experimental and numerical analysis is carried out to assess the aerodynamic performance of a novel partial shroud in a straight turbine cascade. This partial shroud is designed as a combination of winglet and shroud. A plain tip is employed as a baseline case. A pure winglet tip is also studied for comparison. Both experiments and predictions demonstrate that this novel partial shroud configuration has aerodynamic advantages over the pure winglet arrangement. Predicted results show that, relative to the baseline blade with a plain tip, using the partial shroud can lead to a reduction of 20.89% in the mass-averaged total pressure coefficient on the upper half-span of a plane downstream of the cascade trailing edge and 16.53% in the tip leakage mass flow rate, whereas the pure winglet only decreases these two performance parameters by 11.36% and 1.32%, respectively. The flow physics is explored in detail to explain these results via topological analyses. The use of this new partial shroud significantly affects the topological structures and total pressure loss coefficients on various axial cross sections, particularly at the rear part of the blade passage. The partial shroud not only weakens the tip leakage vortex (TLV) but also reduces the strength of passage vortex near the casing (PVC) endwall. Furthermore, three partial shrouds with width-to-pitch ratios of 3%, 5%, and 7% are considered. With an increase in the width of the winglet part, improvements in aerodynamics and the tip leakage mass flow rate are limited.


Author(s):  
G. N. Xie ◽  
Q. Y. Chen ◽  
M. Zeng ◽  
Q. W. Wang

Compact heat exchangers such as tube-fin types and plate-fin types are widely used for gas-liquid or gas-gas applications. Some examples are air-coolers, fan coils, regenerators and recuperators in micro-turbines. In this study, thermal design of fin-and-tube (tube-fin) heat exchanger performance with fins being employed outside and inside tubes was presented, with which designed plate-fin heat exchanger was compared. These designs were performed under identical mass flow rate, inlet temperature and operating pressure on each side for recuperator in 100kW microturbine as well as specified allowable fractions of total pressure drop by means of Log-Mean Temperature Difference (LMTD) method. Heat transfer areas, volumes and weights of designed heat exchangers were evaluated. It is shown that, under identical heat duty, fin-and-tube heat exchanger requires 1.8 times larger heat transfer area outside tubes and volume, 0.6 times smaller heat transfer area inside tubes than plate-fin heat exchanger. Under identical total pressure drop, fin-and-tube heat exchanger requires about 5 times larger volume and heat transfer area in gas-side, 1.6 times larger heat transfer area in air-side than plate-fin heat exchanger. Total weight of fin-and-tube heat exchanger is about 2.7 times higher than plate-fin heat exchanger, however, the heat transfer rate of fin-and-tube heat exchanger is about 1.4 times larger than that of plate-fin heat exchanger. It is indicated that, both-sides finned tube heat exchanger may be used in engineering application where the total pressure drop is severe to a small fraction and the operating pressure is high, and may be adopted for recuperator in microturbine.


Sign in / Sign up

Export Citation Format

Share Document