Abrasive Wear of Polymer Fibers Investigated by Reciprocal Scratching in an Atomic Force Microscope

2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Michael Giordano ◽  
Steven Schmid ◽  
Mohammadreza Arjmandi ◽  
Maziar Ramezani

Three-dimensional (3D) woven fabrics have been considered by biomedical researchers to be used as load-bearing surfaces in joint and ligament replacements. In this regard, wear is a crucial phenomenon that determines material failure as well as biological response of body to wear debris. The current study evaluates various microscale screening methods with the aid of atomic force microscopy (AFM) for biocompatible polymer fibers that are used in 3D woven fabrics. Fibers in mono- and multi-filament forms were subjected to indentation, scratching, and line wear testing in dry and soaked conditions, and the effect of key parameters such as applied normal load, sliding velocity, and number of wear cycles was investigated. The area of worn material was determined by geometric approximation superimposed on the measured residual scratch of line wear. Moisture was found to lower the indentation hardness of some fibers while increasing the hardness of others. Line wear results clearly suggest ultrahigh molecular weight polyethylene (UHMWPE) to be the primary material for further investigation and that monofilament fibers should be avoided.

2018 ◽  
Vol 25 (4) ◽  
pp. 735-746 ◽  
Author(s):  
Alice E. Snape ◽  
Jody L. Turner ◽  
Hassan M. El-Dessouky ◽  
Mohamed N. Saleh ◽  
Hannah Tew ◽  
...  

2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Vaibhav Nemane ◽  
Satyajit Chatterjee

Abstract Electroless Ni–B–W coating is deposited on low carbon steel in an alkaline sodium borohydride-reduced electroless bath. The mechanical and tribological properties of such coatings are much necessary to be assessed to carry out application-based studies. The present work focuses mainly on the evaluation of hardness and fracture toughness of electroless Ni–B–W coatings using a scratch tester. Coating's response toward scratching is also studied thoroughly. The characteristic short-range order present in its lattice structure causes the generation of a specific behavioral pattern. Furthermore, a linear sliding wear test is carried out on coatings' surface to analyze the wear behavior at different loading conditions. The specific wear rate is observed to be minimum at a normal load of 22.5 N against Si3N4 counterbody. The patterns of tribological behavior of the coating at different load values are examined from the worn surface morphologies. But before embarking on the scratch and sliding wear tests, the synthesized coatings are characterized under field emission scanning electron microscope and X-ray diffraction in an exhaustive manner. The growth rates with respect to time and the changes in morphological aspects of the coating are also evaluated. The present study establishes electroless Ni–B–W deposits as a suitable option for protecting mechanical components against wear.


2001 ◽  
Vol 7 (S2) ◽  
pp. 124-125
Author(s):  
Christopher A. Siedlecki

A widely accepted tenet of biomaterials research is that the initial step following contact of a synthetic material with blood is the rapid adsorption of plasma proteins. The composition of this adsorbed protein layer is dependent on a variety of factors, including the surface properties of the implant material and the nature of the adsorbing proteins, and the composition and function of this protein layer is important in the subsequent biological response and ultimately the success or failure of the implanted material. While a great amount of effort has gone into developing structure/function responses for implanted biomaterials, there is still much about the molecular level interactions to be determined. We utilized atomic force microscopy (AFM) to investigate the molecular-level interactions of proteins with model biomaterial substrates. The AFM is unique in that it offers the opportunity to characterize interfacial environments, determine material properties, measure protein/surface interaction forces, and visualize the tertiary structure of adsorbed proteins.


2019 ◽  
Vol 90 (13-14) ◽  
pp. 1477-1494
Author(s):  
Magdi El Messiry ◽  
Shaimaa El-Tarfawy

Cutting processes using blades have found applications in many industries; for example, in garments, fiber–polymer composites, and high-performance fabric forming. In recent decades, the process of cutting the material using a robotic-controlled blade has raised concern about the value of the pressure and the cut force required for a certain type of woven fabric and the estimation of its value before the pressing and cutting process. A simple theoretical relation was established based on the fabric structure and yarn shear stress. The model formulation and experimental results to describe the basic theory of blade cutting fracture for woven fabric of different designs was derived. In this work, the experimental investigation of the effect of the fabric specifications, normal load, and the cutting speed on the cutting force was carried out, which indicates that the value of the specific cutting resistance of the fabric was found to be highly correlated with the fabric structure, warp and weft yarn count, Young’s modulus of the fabric, and fractional cover factors ratio ζ.


2018 ◽  
Vol 12 (01) ◽  
pp. 057-066 ◽  
Author(s):  
Maleeha Nayyer ◽  
Shahreen Zahid ◽  
Syed Hammad Hassan ◽  
Salman Aziz Mian ◽  
Sana Mehmood ◽  
...  

ABSTRACT Objective: The objective of this study was to assess the surface properties (microhardness and wear resistance) of various composites and compomer materials. In addition, the methodologies used for assessing wear resistance were compared. Materials and Methods: This study was conducted using restorative material (Filtek Z250, Filtek Z350, QuiXfil, SureFil SDR, and Dyract XP) to assess wear resistance. A custom-made toothbrush simulator was employed for wear testing. Before and after wear resistance, structural, surface, and physical properties were assessed using various techniques. Results: Structural changes and mass loss were observed after treatment, whereas no significant difference in terms of microhardness was observed. The correlation between atomic force microscopy (AFM) and profilometer and between wear resistance and filler volume was highly significant. The correlation between wear resistance and microhardness were insignificant. Conclusions: The AFM presented higher precision compared to optical profilometers at a nanoscale level, but both methods can be used in tandem for a more detailed and precise roughness analysis.


2019 ◽  
Vol 111 (7) ◽  
pp. 1047-1053
Author(s):  
David May ◽  
Björn Willenbacher ◽  
Jan Semar ◽  
Keith Sharp ◽  
Peter Mitschang

Sign in / Sign up

Export Citation Format

Share Document