scholarly journals Thermomechanical Analysis of an Electrically Assisted Wire Drawing Process

Author(s):  
Antonio J. Sánchez Egea ◽  
Hernán A. González Rojas ◽  
Diego J. Celentano ◽  
Jordi Jorba Perió ◽  
Jian Cao

Electrically assisted (EA) wire drawing process is a hybrid manufacturing process characterized by enhancement of the formability, ductility, and elongation of the wire drawn specimen. A thermomechanical model to describe the change of the mechanical response due to the thermal contribution is proposed in this work. Additionally, a numerical simulation was conducted to study the potential and limitations of this hybrid process by using two different hardening laws: a phenomenological and a dislocation-based hardening laws. The results show how the flow stress, the effective plastic strain, and residual stresses behave under the electroplusing effect. In addition, electron backscattered diffraction was used to study the electropulsing treatments on the microstructure during cold drawing. It is observed a decrease of the high- and low-angle grain boundaries (LAGB) for samples deformed with electropulsing. This detwinning process has a strong influence on the strain hardening by improving the material formability. It was shown that the two proposed hardening laws adequately describe the EA wire drawing process showing a similar mechanical behavior. Nevertheless, the dislocation-based hardening law has the potential to be generalized to many other material and process configurations without extensive number of material tests as the phenomenological hardening law would require.

2021 ◽  
Vol 1035 ◽  
pp. 801-807
Author(s):  
Xiao Lei Yin ◽  
Jian Cheng ◽  
Gang Zhao

High-strength cable-steel bridge is the “lifeline” of steel structure bridges, which requires high comprehensive mechanical properties, and cold-drawing is the most important process to produce high-strength cable-steel bridge. Therefore, through the ABAQUS platform, a bridge wire drawing model was established, and the simulation analysis on the process of stress strain law and strain path trends for high-strength bridge steel wire from Φ 12.65 mm by seven cold-drawing to Φ 6.90 mm was conducted. The simulation results show that the wire drawing the heart of the main axial deformation, surface and sub-surface of the main axial and radial deformation occurred, with the increase in the number of drawing the road, the overall deformation of the wire was also more obvious non-uniformity. In the single-pass drawing process, the change in the potential relationship of each layer of material was small, and multiple inflection points appeared in the strain path diagram; the change in the seven-pass potential relationship was more drastic, which can basically be regarded as a simple superposition of multiple single-pass pulls.


2010 ◽  
Vol 643 ◽  
pp. 43-48 ◽  
Author(s):  
Leonardo Kyo Kabayama ◽  
Odair Doná Rigo ◽  
Jorge Otubo

Most of the applications of NiTi SMA are as a wire form. In this sense it is important to know the effects of thermo-mechanical processing such as reduction per pass and intermediate annealing on the wire drawing process. For this work they were produced wire by cold drawing using 15 % area reduction per pass with and without intermediate annealing. The starting ingot was produced by VIM process. The influence of thermo-mechanical processing will be related to the martensitic transformation temperatures.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1871
Author(s):  
Jürgen Oberer ◽  
Konrad Schneider ◽  
Jens-Peter Majschak

The tensile testing of amorphous polyethylene terephthalate is observed until failure by IR thermography and optical strain measurement. The deformation can be subdivided in six deformation phases: elastic deformation, neck formation with a localized sharp temperature rise, neck propagation, which is also known as cold-drawing, with heat generation in a transition zone, crack initialization with local heating, crack growth, and rupture. These deformation phases are showing different mechanical and thermal reactions to the deformation. The initial and drawn samples are studied with differential scanning calorimetry. Alongside heating due to the dissipation of mechanical energy, latent heat due to strain-induced crystallization was detected. While the material is cold-drawn, a high dependence on the crosshead speed is found for the heat generation as well as the draw ratio, mechanical response, and morphological changes due to orientation and crystallization. For cold-drawing, a thermomechanical model is introduced, which is based on the first law of thermodynamics and reproduces the temperature distribution along the sample.


2022 ◽  
pp. 105678952110725
Author(s):  
Álvaro A González ◽  
Marcela A Cruchaga ◽  
Diego J Celentano

This paper presents an experimental and numerical analysis of damage evolution in AA2011 aluminum alloy wires drawn under different scenarios. To this end, load-unload tensile tests were firstly carried out in order to characterize the degradation of the mechanical response in every cycle where the experimental results show a bilinear damage relationship in terms of the effective plastic strain. Therefore, a modification of the classical Lemaitre model is proposed in this work in order to reproduce bilinear paths of damage with the addition of only two parameters that can be directly obtained from the material characterization. Then, the damage predictive capability of this new experimental-based model is assessed in numerical simulations of the drawing process in one and two passes (considering for this last case the sequential and tandem configurations) where the computed predictions are compared with the corresponding experimental data showing a good agreement between them.


Author(s):  
Asit Kumar Choudhary ◽  
Braj Bihari Prasad

Background: The telescopic fork is mainly used for suspension purposes in the different devices to absorb the vibration and disturbances from the road or mechanical devices. Factors such as die angle, drawing velocity, lubrication, and area reduction per pass significantly affect the drawing loads and residual stresses formed in the drawn tube during the tube marking process. Objective: Instantaneous transverse crack was found on the pipe's outer surface during the drawing process in the current work, and the key challenges were to reduce the percentage of pipe rejection. Methodology: In this work, optimum drawing die designs were proposed by using the finite element method (FEM). A FEM solving tool called Abaqus has been used for simulating and solving the cold-rolled process. The FEM model of the cold drawing process is generated in Abaqus with the same boundary condition (Axial load and constrain) as using on the actual wire drawing machine. Result: There was a substantial reduction in the area; axial stress (Tensile) along the die side is 672 MPa which is 23 % lower than the current die axial stress value of 877 MPa. A 48 % plastic strain was found along the purposed die side, which was 17 % lower than the existing strain of 64%. Finally, reduced the area by changing the die geometry from ~52% to 35 to 40 %. Conclusion: It was possible to abolish transverse crack on the pipe's outer surface to reduce the area reduction (35 to 40 %) in the output tube and strain (17 %). As part of the optimization of the FEM work process, this work gives us encouraging results. Further research will be considered for future positions.


2013 ◽  
Vol 577-578 ◽  
pp. 553-556 ◽  
Author(s):  
Jesús Toribio ◽  
Miguel Lorenzo ◽  
L. Aguado ◽  
Diego Vergara ◽  
Viktor Kharin

Prestressing steels, obtained by cold drawing, are highly susceptible to hydrogen embrittlement (HE) phenomena. Stress and strain fields produced by cold drawing play an essential role in this process since they affect hydrogen diffusion. Therefore, variations of such fields due to changes in drawing conditions could modify life in-service of these structural components. In this work the effect on HE of a parameter of the wire drawing process, thebearing length, is analyzed by means of diverse numerical simulations by the finite element method (FEM). The results of this work allow the definition of acharacteristic valueof the die bearing length equal to the wire radius, and demonstrate that the effects of stress-strain fields produced by wire drawing on HE are reduced when the bearing length exceeds such a characteristic value, so that the optimum cold drawing process is that with a bearing length higher than the wire radius.


2008 ◽  
Vol 571-572 ◽  
pp. 21-26 ◽  
Author(s):  
Adele Carradò ◽  
D. Duriez ◽  
Laurent Barrallier ◽  
Sebastian Brück ◽  
Agnès Fabre ◽  
...  

Seamless tubes are used for many applications, e.g. in heating, transport gases and fluids, evaporators as well as medical use and as intermediate products for hydroforming and various mechanical applications, where the final dimensions normally are given by some cold drawing steps. The first process step – piercing of the billet, for example by extrusion or 3-roll-milling - typically results in ovality and eccentricity in the tube causing non-symmetric material flow during the cold drawing process, i.e. inhomogeneous deformation. Because of this non-axisymmetric deformation and of deviations over tube length caused by moving tools, this process step generates residual stresses. To understand the interconnections between the geometrical changes in the tubes and the residual stresses, the residual strains in a copper tube had been measured by neutron diffraction.


Sign in / Sign up

Export Citation Format

Share Document