Specific Entropy Generation in a Gas Turbine Power Cycle

2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Y. Haseli

Numerous studies have shown that the minimization of entropy generation does not always lead to an optimum performance in energy conversion systems. The equivalence between minimum entropy generation and maximum power output or maximum thermal efficiency in an irreversible power cycle occurs subject to certain design constraints. This article introduces specific entropy generation defined as the rate of total entropy generated due to the operation of a power cycle per unit flowrate of fuel. Through a detailed thermodynamic modeling of a gas turbine cycle, it is shown that the specific entropy generation correlates unconditionally with the thermal efficiency of the cycle. A design at maximum thermal efficiency is found to be identical to that at minimum specific entropy generation. The results are presented for five different fuels including methane, hydrogen, propane, methanol, and ethanol. Under identical operating conditions, the thermal efficiency is approximately the same for all five fuels. However, a power cycle that burns a fuel with a higher heating value produces a higher specific entropy generation. An emphasis is placed to distinguish between the specific entropy generation (with the unit of J/K mol fuel) and the entropy generation rate (W/K). A reduction in entropy generation rate does not necessarily lead to an increase in thermal efficiency.

1998 ◽  
Vol 120 (3) ◽  
pp. 797-800 ◽  
Author(s):  
W. W. Lin ◽  
D. J. Lee

Second-law analysis on the herringbone wavy plate fin-and-tube heat exchanger was conducted on the basis of correlations of Nusselt number and friction factor proposed by Kim et al. (1997), from which the entropy generation rate was evaluated. Optimum Reynolds number and minimum entropy generation rate were found over different operating conditions. At a fixed heat duty, the in-line layout with a large tube spacing along streamwise direction was recommended. Furthermore, within the valid range of Kim et al.’s correlation, effects of the fin spacing and the tube spacing along spanwise direction on the second-law performance are insignificant.


2006 ◽  
Vol 128 (4) ◽  
pp. 324-330 ◽  
Author(s):  
W. A. Khan ◽  
J. R. Culham ◽  
M. M. Yovanovich

The following study will examine the effect on overall thermal/fluid performance associated with different fin geometries, including, rectangular plate fins as well as square, circular, and elliptical pin fins. The use of entropy generation minimization, EGM, allows the combined effect of thermal resistance and pressure drop to be assessed through the simultaneous interaction with the heat sink. A general dimensionless expression for the entropy generation rate is obtained by considering a control volume around the pin fin including base plate and applying the conservations equations for mass and energy with the entropy balance. The formulation for the dimensionless entropy generation rate is developed in terms of dimensionless variables, including the aspect ratio, Reynolds number, Nusselt number, and the drag coefficient. Selected fin geometries are examined for the heat transfer, fluid friction, and the minimum entropy generation rate corresponding to different parameters including axis ratio, aspect ratio, and Reynolds number. The results clearly indicate that the preferred fin profile is very dependent on these parameters.


Author(s):  
Gianni Natalini ◽  
Enrico Sciubba

The problem of determining the optimal configuration of a cooled gas-turbine blade is approached by an entropy minimization technique proposed in previous works by the same authors. The present paper describes the application of the same line of thought to a more complex (and realistic) pseudo-optimization procedure, in which the objective function is again the global entropy generation rate, but two integral constraints are added to the original formulation: the maximum blade temperature (weak constraint) and the overall enthalpy drop of the working fluid in the blade passage (strong constraint). The discontinuous optimization procedure is presented here in an application which resembles a trial-and-error technique, but can be rigorously and formally described and implemented [12]. As a “zero configuration”, a realistic 2-D geometry is considered, and the thermo-fluiddynamic field around it is computed via a standard finite-element code. Then, the entropy generation rates in the blade/fluid system are calculated, and the value of the overall enthalpy drop of the gas as well as the value and location of the maximum blade temperature are recorded. Keeping all other parameters fixed (in particular, maintaining the same cooling air flowrate), the geometry of the blade is slightly “perturbed”, by introducing arbitrary modifications in the blade profile, the number and location of cooling holes, etc. Again, the velocity and temperature fields are computed, and inlet conditions are tuned so that the overall enthalpy drop remains approximately constant and the blade maximum temperature does not exceed a certain assigned value. An “optimal” configuration is found, which is affected by the minimal entropy generation rate, while abiding to the imposed constraints. The procedure is demonstrated on a realistic blade profile, and is shown to produce a better performing cascade, at least in this 2-D simulation. The extension to 3-D problems is — in principle — straightforward (but see Section 3 for further comments).


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Rajkumar Sarma ◽  
Pranab Kumar Mondal

We focus on the entropy generation minimization for the flow of a viscoelastic fluid through a parallel plate microchannel under the combined influences of applied pressure gradient, interfacial slip, and conjugate heat transfer. We use the simplified Phan–Thien–Tanner model (s-PTT) to represent the rheological behavior of the viscoelastic fluid. Using thermal boundary conditions of the third kind, we solve the transport equations analytically to obtain the velocity and temperature distributions in the flow field, which are further used to calculate the entropy generation rate in the analysis. In this study, the influential role of the following dimensionless parameters on entropy generation rate is examined: the viscoelastic parameter (εDe2), slip coefficient (k¯), channel wall thickness (δ), thermal conductivity of the wall (γ), Biot number (Bi) and Peclet number (Pe). We show that there exists a particular value of the abovementioned parameters that lead to a minimum entropy generation rate in the system. We believe the results of this analysis could be of helpful in the optimum design of microfluidic system/devices typically used in thermal management, such as micro-electronic devices, microreactors, and microheat exchangers.


Author(s):  
R. K. Jha ◽  
S Chakraborty

This paper deals with estimation of the optimal dimensions of arrays of plate fins cooled by forced convection. The optimization is achieved by minimizing the entropy generation rate using genetic algorithm-based evolutionary computing techniques. Results are presented for staggered plate fins configuration and continuous plate fins configuration. The effects of heat transfer and fluid friction on entropy generation rate are also reported.


1996 ◽  
Vol 118 (2) ◽  
pp. 98-101 ◽  
Author(s):  
Adrian Bejan

It is shown that to maximize the power output of a power plant is equivalent to minimizing the total entropy generation rate associated with the power plant. This equivalence is illustrated by using two of the oldest and simplest models of power plants with heat transfer irreversibilities. To calculate the total entropy generation rate correctly, one must recognize that the optimization process (e.g., the variability of the heat input) requires “room to move,” i.e., an additional, usually overlooked, contribution to the total entropy generation rate.


2018 ◽  
Vol 24 (4) ◽  
pp. 1 ◽  
Author(s):  
Kadhum Audaa Jehhef

In the present study, the effect of new cross-section fin geometries on overall thermal/fluid performance had been investigated. The cross-section included the base original geometry of (triangular, square, circular, and elliptical pin fins) by adding exterior extra fins along the sides of the origin fins. The present extra fins include rectangular extra fin of 2 mm (height) and 4 mm (width) and triangular extra fin of 2 mm (base) 4 mm (height). The use of entropy generation minimization method (EGM) allows the combined effect of thermal resistance and pressure drop to be assessed through the simultaneous interaction with the heat sink. A general dimensionless expression for the entropy generation rate is obtained by considering a control volume around the pin fin including a base plate and applying the conservations equations of mass and energy with the entropy balance. The dimensionless numbers used includes the aspect ratio (ε), Reynolds number (Re), Nusselt number (Nu), and the drag coefficients (CD). Fourteen different cross-section fin geometries are examined for the heat transfer, fluid friction, and the minimum entropy generation rate. The results showed that the Nusselt number increases with increasing the Reynolds number for all employed models. The ellipse models (ET and ER-models) give the highest value in the Nusselt number as compared with the classical pin fins. The fin of the square geometry with four rectangular extra fins (SR-models) gives an agreement in Nusselt number as compared with the previous study.  


Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1065 ◽  
Author(s):  
Ming Sun ◽  
Shaojun Xia ◽  
Lingen Chen ◽  
Chao Wang ◽  
Chenqi Tang

Based on the theory of finite-time thermodynamics (FTT), the effects of three design parameters, that is, inlet temperature, inlet pressure, and inlet total mole flow rate, of a tubular plug-flow sulfuric acid decomposition reactor on the total entropy generation rate (EGR) and SO2 yield are analyzed firstly. One can find that when the three design parameters are taken as optimization variables, the minimum total EGR and the maximum SO2 yield of the reference reactor restrict each other, i.e., the two different performance objectives cannot achieve the corresponding extremum values at the same time. Then, the second-generation non-dominated solution sequencing genetic algorithm (NSGA-II) is further used to pursue the minimum total EGR and the maximum SO2 yield of the reference reactor by taking the three parameters as optimization design variables. After the multi-objective optimization, the reference reactor can be Pareto improved, and the total EGR can be reduced by 9% and the SO2 yield can be increased by 14% compared to those of the reference reactor. The obtained results could provide certain theoretical guidance for the optimal design of actual sulfuric acid decomposition reactors.


Author(s):  
Yousef Haseli

The method of specific entropy generation (SEG) is employed to show how the thermal efficiency of a combined cycle power plant can be improved. SEG is defined as the total entropy generation rate associated with the operation of a power plant per unit flowrate of the fuel burnt in the combustor. In a recent article published in Journal of Energy Resources and Technology, it is shown that the thermal efficiency of a gas turbine cycle inversely correlates with SEG. In this work, we extend the analysis to show that the same relation between the thermal efficiency and SEG is also valid for a combined cycle. The topping cycle consists of a compressor, a combustor and a gas turbine, whereas the bottoming cycle includes a heat recovery steam generator, a steam turbine, a condenser, a deaerator, a condensate pump and a feed water pump. It is shown that the minimization of SEG is identical to the maximization of thermal efficiency. An illustrative example is presented using the SEG method to improve the efficiency of the combined cycle. The results reveal that 89% of the inefficiencies takes place in the gas turbine cycle. A modified design is then proposed to reduce the efficiency losses in the topping cycle. In the modified design, the thermal energy of the flue gases is first used in a heat exchanger to preheat the air before the combustor. The flue gases leaving the heat exchanger is then directed to the HRSG for producing steam. With this modification, the thermal efficiency and the power output of the combined cycle increase 2.7 percentage points and 20.9 kW per unit molar flowrate of the fuel. Recovering the thermal energy of the flue gases for both preheating the air and producing the steam appears to be more efficient than just producing the steam. Despite the net power production of the bottoming cycle decreases in the modified design, the overall efficiency of the combined cycle increases due to the improvement in the efficiency of the topping cycle.


Sign in / Sign up

Export Citation Format

Share Document