scholarly journals The Impact of Realistic Casing Geometries and Clearances on Fan Blade Tip Aerodynamics

2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Alistair John ◽  
Ning Qin ◽  
Shahrokh Shahpar

During engine operation, fan casing abradable liners are worn by the blade tip, resulting in the formation of trenches. This paper describes the influence of these trenches on the fan blade tip aerodynamics. A detailed understanding of the fan tip flow features for cropped and trenched clearances is first developed. A parametric model is then used to model trenches in the casing above the blade tip and varying blade tip positions. It is shown that increasing clearance via a trench reduces performance by less than increasing clearance through cropping the blade tip. A response surface method is then used to generate a model that can predict fan efficiency for a given set of clearance and trench parameters. This model can be used to influence fan blade design and understand engine performance degradation in service. It is shown that an efficiency benefit can be achieved by increasing the amount of tip rubbing, leading to a greater portion of the tip clearance sat within the trench. It is shown that the efficiency sensitivity to clearance is biased toward the leading edge (LE) for cropped tips and the trailing edge (TE) for trenches.

Author(s):  
Alistair John ◽  
Ning Qin ◽  
Shahrokh Shahpar

During engine operation fan casing abradable liners are worn by the blade tip, resulting in the formation of trenches. This paper investigates the influence of these trenches on the fan blade tip aerodynamics. A detailed understanding of the tip flow features for the fan blade under investigation is developed. A parametric model is then used to model trenches in the casing above the blade tip. It is shown that increasing clearance via a trench reduces performance by less than increasing clearance through cropping the blade tip. A response surface method is then used to generate a model that can predict fan efficiency for a given set of clearance and trench parameters. It is shown that the efficiency sensitivity to clearance is greater for cropped tips than trenches, and is biased towards the leading edge for cropped tips, and the trailing edge for trenches.


Author(s):  
Maria V. Culmone ◽  
Nicolás Garcia-Rosa ◽  
Xavier Carbonneau

Transient effects are important features of engine performance calculations. The aim of this paper is to analyze a new, fully transient model implemented using the PRopulsion Object Oriented Simulation Software (PROOSIS) for a civil, short range turbofan engine. A transient turbofan model, including the mechanical inertia effect has been developed in PROOSIS. Specific physical effects such as heat soakage, mass storage, blade tip clearance and combustion delay have been implemented in the relevant components of PROOSIS to obtain a fully transient model. Since a large number of components are concerned by all the transient effects, an influence study is presented to determine which are the most critical effects, and in which components. Inertia represents the relevant phenomenon, followed by thermal effects, combustion delay and finally mass storage. The comparison with experimental data will provide a first validation of the model. Finally a sensitivity study is reported to assess the impact of uncertain knowledge of key input parameters in the response time prediction accuracy.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3552 ◽  
Author(s):  
Chun-Yi Zhang ◽  
Jing-Shan Wei ◽  
Ze Wang ◽  
Zhe-Shan Yuan ◽  
Cheng-Wei Fei ◽  
...  

To reveal the effect of high-temperature creep on the blade-tip radial running clearance of aeroengine high-pressure turbines, a distributed collaborative generalized regression extremum neural network is proposed by absorbing the heuristic thoughts of distributed collaborative response surface method and the generalized extremum neural network, in order to improve the reliability analysis of blade-tip clearance with creep behavior in terms of modeling precision and simulation efficiency. In this method, the generalized extremum neural network was used to handle the transients by simplifying the response process as one extremum and to address the strong nonlinearity by means of its nonlinear mapping ability. The distributed collaborative response surface method was applied to handle multi-object multi-discipline analysis, by decomposing one “big” model with hyperparameters and high nonlinearity into a series of “small” sub-models with few parameters and low nonlinearity. Based on the developed method, the blade-tip clearance reliability analysis of an aeroengine high-pressure turbine was performed subject to the creep behaviors of structural materials, by considering the randomness of influencing parameters such as gas temperature, rotational speed, material parameters, convective heat transfer coefficient, and so forth. It was found that the reliability degree of the clearance is 0.9909 when the allowable value is 2.2 mm, and the creep deformation of the clearance presents a normal distribution with a mean of 1.9829 mm and a standard deviation of 0.07539 mm. Based on a comparison of the methods, it is demonstrated that the proposed method requires a computing time of 1.201 s and has a computational accuracy of 99.929% over 104 simulations, which are improvements of 70.5% and 1.23%, respectively, relative to the distributed collaborative response surface method. Meanwhile, the high efficiency and high precision of the presented approach become more obvious with the increasing simulations. The efforts of this study provide a promising approach to improve the dynamic reliability analysis of complex structures.


Author(s):  
Eric B. Holmquist ◽  
Peter L. Jalbert

New and future gas turbine engines are being required to provide greater thrust with improved efficiency, while simultaneously reducing life cycle operating costs. Improved component capabilities enable active control methods to provide better control of engine operation with reduced margin. One area of interest is a means to assess the relative position of rotating machinery in real-time, in particular hot section turbo machinery. To this end, Hamilton Sundstrand is working to develop a real-time means to monitor blade position relative to the engine static structure. This approach may yield other engine operating characteristics useful in assessing component health, specifically measuring blade tip clearance, time-of-arrival, and other parameters. UTC is leveraging its many years of experience with engine control systems to develop a microwave-based sensing device, applicable to both military and commercial engines. The presentation will discuss a hot section engine demonstration of a blade position monitoring system and the control system implications posed by a microwave-based solution. Considerations necessary to implement such a system and the challenges associated with integrating a microwave-based sensor system into an engine control system are discussed.


Author(s):  
K. Anto ◽  
S. Xue ◽  
W. F. Ng ◽  
L. J. Zhang ◽  
H. K. Moon

This study focuses on local heat transfer characteristics on the tip and near-tip regions of a turbine blade with a flat tip, tested under transonic conditions in a stationary, 2-D linear cascade with high freestream turbulence. The experiments were conducted at the Virginia Tech transonic blow-down wind tunnel facility. The effects of tip clearance and exit Mach number on heat transfer distribution were investigated on the tip surface using a transient infrared thermography technique. In addition, thin film gages were used to study similar effects in heat transfer on the near-tip regions at 94% height based on engine blade span of the pressure and suction sides. Surface oil flow visualizations on the blade tip region were carried-out to shed some light on the leakage flow structure. Experiments were performed at three exit Mach numbers of 0.7, 0.85, and 1.05 for two different tip clearances of 0.9% and 1.8% based on turbine blade span. The exit Mach numbers tested correspond to exit Reynolds numbers of 7.6 × 105, 9.0 × 105, and 1.1 × 106 based on blade true chord. The tests were performed with a high freestream turbulence intensity of 12% at the cascade inlet. Results at 0.85 exit Mach showed that an increase in the tip gap clearance from 0.9% to 1.8% translates into a 3% increase in the average heat transfer coefficients on the blade tip surface. At 0.9% tip clearance, an increase in exit Mach number from 0.85 to 1.05 led to a 39% increase in average heat transfer on the tip. High heat transfer was observed on the blade tip surface near the leading edge, and an increase in the tip clearance gap and exit Mach number augmented this near-leading edge tip heat transfer. At 94% of engine blade height on the suction side near the tip, a peak in heat transfer was observed in all test cases at s/C = 0.66, due to the onset of a downstream leakage vortex, originating from the pressure side. An increase in both the tip gap and exit Mach number resulted in an increase, followed by a decrease in the near-tip suction side heat transfer. On the near-tip pressure side, a slight increase in heat transfer was observed with increased tip gap and exit Mach number. In general, the suction side heat transfer is greater than the pressure side heat transfer, as a result of the suction side leakage vortices.


Author(s):  
Theodore S. Brockett ◽  
Jerzy T. Sawicki

A six-degree-of-freedom non-linear model is developed using Lagrange’s equation. The model is used to estimate transient fan-stage dynamic response during a fan-blade-out event in a turbo fan engine. The coupled degrees of freedom in the model include the fan whirl in the fan plane, the torsional response of the fan and low-pressure turbines (LPTs) about the engine centerline, the radial position of the released blade fragment, and the angular rotation of the trailing blade from its free state due to acceleration of the released blade. The released blade is assumed to slide radially outward along the trailing blade without friction. The external loading applied to the system includes fan imbalance, the remaining fan blades machining away the rub strip, rubbing of the blades with the fan case, and slowly-varying torques on the low pressure (LP) spool as engine performance degrades. The machining of the abradable imparts tangential loading on the fan blades as momentum is transferred to the liberated rub strip material. After application of the initial conditions including angular positions, angular velocities, released blade fragment position, and torsional wind-up, the governing equations are integrated forward in time from the instant the blade fragment is released. A reasonable match to test data is shown. Parameters affecting the fan-system response are varied to study the impact on fan peak lateral whirl amplitude, peak LP shaft torque, and peak loading on the trailing blade. It is found that the rub strip and mass eccentricity have the strongest influence on the LP shaft torsional loading. It is found that mass eccentricity has the largest influence on peak fan whirl. It is also found that released blade mass and attachment stiffness have the largest influence on the trailing blade loading.


Author(s):  
Patrick H. Wagner ◽  
Jan Van herle ◽  
Lili Gu ◽  
Jürg Schiffmann

Abstract The blade tip clearance loss was studied experimentally and numerically for a micro radial fan with a tip diameter of 19.2mm. Its relative blade tip clearance, i.e., the clearance divided by the blade height of 1.82 mm, was adjusted with different shims. The fan characteristics were experimentally determined for an operation at the nominal rotational speed of 168 krpm with hot air (200 °C). The total-to-total pressure rise and efficiency increased from 49 mbar to 68 mbar and from 53% to 64%, respectively, by reducing the relative tip clearance from 7.7% to the design value of 2.2%. Single and full passage computational fluid dynamics simulations correlate well with these experimental findings. The widely-used Pfleiderer loss correlation with an empirical coefficient of 2.8 fits the numerical simulation and the experiments within +2 efficiency points. The high sensitivity to the tip clearance loss is a result of the design specific speed of 0.80, the highly-backward curved blades (17°), and possibly the low Reynolds number (1 × 105). The authors suggest three main measures to mitigate the blade tip clearance losses for small-scale fans: (1) utilization of high-precision surfaced-grooved gas-bearings to lower the blade tip clearance, (2) a mid-loaded blade design, and (3) an unloaded fan leading edge to reduce the blade tip clearance vortex in the fan passage.


Author(s):  
Xianghai Chai ◽  
Pinlian Han ◽  
Tongcheng Shi ◽  
Zhiqiang Wang

The wide-chord swept fan blade (WCSFB) has been extensively used in a advanced high bypass ratio turbofan engines. This paper explores the nature of WCSFB tip clearance. From the static analysis, it is found that the tip radial clearance at leading and trailing edge of WCSFB will be reduced with either bending or torsional deformation of the blade. And the change of the tip radial clearances varies with the twist angle. In this study, dynamic response of the WCSFB with different angular accelerations of the engine has been analyzed. It shows that when the angular acceleration of the fan rotor reaches a certain level, considerable bending and torsional deformation of the blade will occur, accompanied by the reduction of the tip radial clearance, which may lead to abnormal rubbing/impact between the blade tip and the casing. This may cause severe consequence for the blade and casing of the engine. The numerical simulation results show that the rubbing/impact between the WCSFB tip and the casing under angular acceleration loads can lead to local buckling of the tip leading edge of the blade, which will cause severe damage at the blade tip. Moreover, the influence of vibration and mass imbalance of the rotor on the fan blade tip clearance is also analyzed. In this paper, the results of a rig test under irregular acceleration for the WCSFB rotor is also presented, which validates the analytical results. The numerical simulation and test results will assist the blade tip clearance design to reflect the nature of the WCSFB under irregular acceleration to ensure safety.


Author(s):  
A. Keshavarz ◽  
K. S. Chapman ◽  
J. Shultz ◽  
D. G. Kuiper

Rising fuel costs and increasingly stringent emission standards push engineers to develop more efficient turbo-machinery. Reducing turbocharger turbine tip clearance is one method of improving turbine performance, thereby improving overall engine operation. By using tip seals or abradable seals, reduction of this clearance is possible. Metco 314 NS material was applied to an Elliot-H type turbocharger turbine shroud to reduce the cold clearance from 0.762 mm (0.030 inch) to 0.457mm (0.018 inch). Two separate yet virtually identical performance tests were conducted at speeds of 13,000 rpm, 15,000 rpm, and 17,000 rpm on the turbocharger. The first test established the efficiency condition of the turbocharger with the tip seal installed. The second was to quantify a decrease in efficiency, if present, after the tip seal was removed. Both tests were conducted as identically as possible. The average amount of available energy not utilized with the tip seal removed was 30.26 kW at 13,000 rpm, 51.42 kW at 15,000 rpm and 45.71 kW at 17,000 rpm.


Author(s):  
Huijing Zhao ◽  
Zhiheng Wang ◽  
Shubo Ye ◽  
Guang Xi

To better understand the characteristics of tip leakage flow and interpret the correlation between flow instability and tip leakage flow, the flow in the tip region of a centrifugal impeller is investigated by using the Reynolds averaged Navier–Stokes solver technique. With the decrease of mass flow rate, both the tip leakage vortex trajectory and the mainflow/tip leakage flow interface are shifted towards upstream. The mainflow/tip leakage flow interface finally reaches the leading edge of main blade at the near-stall condition. A prediction model is proposed to track the tip leakage vortex trajectory. The blade loading at blade tip and the averaged streamwise velocity of main flow within tip clearance height are adopted to determine the tip leakage vortex trajectory in the proposed model. The coefficient k in Chen’s model is found to be not a constant. Actually, it is correlated with h/b (the ratio of blade tip clearance height to blade tip thickness), because h/b will significantly influence the flow structure across the tip clearance. The effectiveness of the proposed prediction model is further demonstrated by tracking the tip leakage vortex trajectories in another three centrifugal impellers characterized with different h/b (s).


Sign in / Sign up

Export Citation Format

Share Document