scholarly journals New Analytic Free Vibration Solutions of Rectangular Thick Plates With a Free Corner by the Symplectic Superposition Method

2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Rui Li ◽  
Pengcheng Wang ◽  
Bo Wang ◽  
Chunyu Zhao ◽  
Yewang Su

Seeking analytic free vibration solutions of rectangular thick plates without two parallel simply supported edges is of significance for an insight into the performances of related engineering devices and structures as well as their rapid design. A challenging set of problems concern the vibrating plates with a free corner, i.e., those with two adjacent edges free and the other two edges clamped or simply supported or one of them clamped and the other one simply supported. The main difficulty in solving one of such problems is to find a solution meeting both the boundary conditions at each edge and the condition at the free corner, which is unattainable using a conventional analytic method. In this paper, for the first time, we extend a novel symplectic superposition method to free vibration of rectangular thick plates with a free corner. The analytic frequency and mode shape solutions are both obtained and presented via comprehensive numerical and graphic results. The rigorousness in mathematical derivation and rationality of the method (without any predetermination for the solutions) guarantee the validity of our analytic solutions, which themselves are also validated by the reported results and refined finite element analysis.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xinran Zheng ◽  
Mingqi Huang ◽  
Dongqi An ◽  
Chao Zhou ◽  
Rui Li

AbstractNew analytic bending, buckling, and free vibration solutions of rectangular nanoplates with combinations of clamped and simply supported edges are obtained by an up-to-date symplectic superposition method. The problems are reformulated in the Hamiltonian system and symplectic space, where the mathematical solution framework involves the construction of symplectic eigenvalue problems and symplectic eigen expansion. The analytic symplectic solutions are derived for several elaborated fundamental subproblems, the superposition of which yields the final analytic solutions. Besides Lévy-type solutions, non-Lévy-type solutions are also obtained, which cannot be achieved by conventional analytic methods. Comprehensive numerical results can provide benchmarks for other solution methods.


1991 ◽  
Vol 58 (1) ◽  
pp. 203-208 ◽  
Author(s):  
D. J. Gorman

A comprehensive study of the free vibration of simply-supported parallelogram plates is conducted. Solutions are obtained by utilizing the superposition method and by taking advantage of symmetry inherent in the problem. Toward this end a new alternating Le´vy-type solution is introduced. Verification tests are conducted by comparing computed eigenvalues with those of rhombic plates in the special case where all plate edges are of equal length. Eigenvalues are stored for eight vibration modes and for a wide range of plate geometry.


2017 ◽  
Vol 11 (12) ◽  
pp. 36 ◽  
Author(s):  
Salih Akour

Composite plates’ subjected to sudden surface heating is investigated. Simply supported boundary conditions along the four sides of the plat are considered. The effect of plate thickness and stacking sequence on the maximum deflection that is induced by the thermal heat flux for a graphite-epoxy composite plate is studied using finite element analysis. Symmetric angle ply laminates plate shows least deformation compared the other stacks of the same thickness.


Author(s):  
Róbert K. Németh ◽  
Bilal M. A. Alzubaidi

In this paper, the free vibration and the buckling of a continuously suspended simply-supported beam are analyzed. A semi-analytical approach is used to calculate the natural circular frequencies and the critical forces of the beam. The length of the suspension is used as a parameter, and the natural circular frequencies and the critical forces are presented in a frequency map or a buckling map. The maps are analyzed in view of the trivial solutions, and the frequency map is compared to the map of discrete cable-stayed beams. Finally, for the validation of the results a numerical, finite element analysis is performed.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Rui Li ◽  
Chao Zhou ◽  
Xinran Zheng

Abstract This study presents a first attempt to explore new analytic free vibration solutions of doubly curved shallow shells by the symplectic superposition method, with focus on non-Lévy-type shells that are hard to tackle by classical analytic methods due to the intractable boundary-value problems of high-order partial differential equations. Compared with the conventional Lagrangian-system-based expression to be solved in the Euclidean space, the present description of the problems is within the Hamiltonian system, with the solution procedure implemented in the symplectic space, incorporating formulation of a symplectic eigenvalue problem and symplectic eigen expansion. Specifically, an original problem is first converted into two subproblems, which are solved by the above strategy to yield the symplectic solutions. The analytic frequency and mode shape solutions are then obtained by the requirement of the equivalence between the original problem and the superposition of subproblems. Comprehensive results for representative non-Lévy-type shells are tabulated or plotted, all of which are well validated by satisfactory agreement with the numerical finite element method. Due to the strictness of mathematical derivation and accuracy of solution, the developed method provides a solid approach for seeking more analytic solutions.


Author(s):  
Zhenghao Yang ◽  
Erkan Oterkus ◽  
Selda Oterkus

AbstractIn this study, a new peridynamic Mindlin plate formulation is introduced by utilising Euler-Lagrange equations. The classical strain energy density of a material point is converted to its corresponding peridynamic form by using Taylor’s expansions. The formulation is suitable for thick plates by considering the transverse shear deformation. Material constants do not have any limitation in the current formulation. Different types of boundary conditions are considered in numerical examples including simply supported, clamped and mixed (clamped-supported). To verify the current formulation, peridynamic solutions of the transverse displacements and rotations are compared against solutions obtained from finite element analysis.


2012 ◽  
Vol 39 (2) ◽  
pp. 217-233 ◽  
Author(s):  
J. David Archibald

Studies of the origin and diversification of major groups of plants and animals are contentious topics in current evolutionary biology. This includes the study of the timing and relationships of the two major clades of extant mammals – marsupials and placentals. Molecular studies concerned with marsupial and placental origin and diversification can be at odds with the fossil record. Such studies are, however, not a recent phenomenon. Over 150 years ago Charles Darwin weighed two alternative views on the origin of marsupials and placentals. Less than a year after the publication of On the origin of species, Darwin outlined these in a letter to Charles Lyell dated 23 September 1860. The letter concluded with two competing phylogenetic diagrams. One showed marsupials as ancestral to both living marsupials and placentals, whereas the other showed a non-marsupial, non-placental as being ancestral to both living marsupials and placentals. These two diagrams are published here for the first time. These are the only such competing phylogenetic diagrams that Darwin is known to have produced. In addition to examining the question of mammalian origins in this letter and in other manuscript notes discussed here, Darwin confronted the broader issue as to whether major groups of animals had a single origin (monophyly) or were the result of “continuous creation” as advocated for some groups by Richard Owen. Charles Lyell had held similar views to those of Owen, but it is clear from correspondence with Darwin that he was beginning to accept the idea of monophyly of major groups.


Sign in / Sign up

Export Citation Format

Share Document