Physics-Based Modeling for Lap-Type Joints Based on the Iwan Model

2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Wanglong Zhan ◽  
Ping Huang

This study proposed a physics-based heuristic modeling for the nonlinear constitutive relation of bolted joints based on the Iwan model accompanying with the rough surface contact theory. The approach led to an Iwan distribution function which possesses the tribology-related features of the contact interface. In particular, the break-free force distribution function of the Jenkins elements could be expressed in terms of height distribution of surface asperities. The model considered the contribution of elastically, elasto-plastically as well as plastically deformed asperities to the total tangential loads. Following this, constitutive relations for lap-type bolted joints and the corresponding backbone curves, hysteresis loops, and energy dissipation per cycle were obtained. A model application was implemented and the results were compared with the published experimental results. The proposed model agrees very well with the experimental results when the contact parameters met the actual contact situation. The obtained results indicated that the model can be used to study the tangential behaviors of rough surfaces.

Volume 2 ◽  
2004 ◽  
Author(s):  
Matthew J. Oldfield ◽  
Huajiang Ouyang ◽  
John E. Mottershead

This paper presents the experimental results of a single joint rig subjected to torsional excitation and the analytical models for representing the experimental results. A bolted joint connecting two beams is shaken at the resonant frequency and the time-domain data and the resultant hysteresis loops of the torque versus the relative angular displacement of the joint are obtained. Damping behaviour evolving from linear viscous type to nonlinear friction type is clearly seen. Both the Jenkins element model and the Bouc-Wen model are used to fit with the hysteresis loops of the experimental results. The capability of the two models in representing experimental hysteresis loops is discussed.


2021 ◽  
pp. 1-20
Author(s):  
Hua Zhou ◽  
Xinhua Long ◽  
Guang Meng ◽  
Xianbo Liu

Abstract A revised fractal contact model considering asperity interactions is proposed. The displacement of mean of asperity heights is used to represent the effects of the asperity interactions. Then the critical contact area will be dependent on the contact load and the contact stiffness will be an integral whose integrand is an implicit expression. The fractal dimension and the fractal roughness are obtained by the measurement of surface profile to calculate the theoretical contact stiffness. The measurement of deformation is conducted to obtain the actual contact stiffness for verification, the results show that the proposed model is closer to the experimental results than other models without considering asperity interactions. Once the contact stiffness is determined, a new total normal stiffness model for bolted joints considering the contact of two rough surfaces is also proposed. Since the contact stiffness is dependent on the clamped force, the total normal stiffness for bolted joints is calculated iteratively at given initial preload and external separating force. Different from the classical model, the total normal stiffness for bolted joint decreases with the external separating force increases, and this stiffness loss will become larger with initial preload decreases. In this sense, the proposed total normal stiffness model is a way to determine the suitable initial preload for different sizes of bolts when the stiffness loss is restricted to a certain range.


2020 ◽  
Vol 2020 (14) ◽  
pp. 305-1-305-6
Author(s):  
Tianyu Li ◽  
Camilo G. Aguilar ◽  
Ronald F. Agyei ◽  
Imad A. Hanhan ◽  
Michael D. Sangid ◽  
...  

In this paper, we extend our previous 2D connected-tube marked point process (MPP) model to a 3D connected-tube MPP model for fiber detection. In the 3D case, a tube is represented by a cylinder model with two spherical areas at its ends. The spherical area is used to define connection priors that encourage connection of tubes that belong to the same fiber. Since each long fiber can be fitted by a series of connected short tubes, the proposed model is capable of detecting curved long tubes. We present experimental results on fiber-reinforced composite material images to show the performance of our method.


Author(s):  
Kuo-Ching Chen

This paper is concerned with the modelling of a magnetorheological (MR) fluid in the presence of an applied magnetic field as a twofolded mixture—a macroscopic fluid continuum and mesoscopic multi-solid continua. By assigning to each solid particle a vectorial mesoscopic variable, which is defined as the nearest relative position vector with respect to other particles, the solid medium of the MR fluid is further treated as a mixture consisting of different components, specified by these mesoscopic variables. The treatment of multi-solid continua is similar to that in the mesoscopic theory of liquid crystals. However, the key difference lies in the fact that the time-discontinuity of the defined vectorial mesoscopic variable will give rise to a ‘pseudo’ chemical reaction in the solid continuum. The equation of the phenomenological mesoscopic distribution function of the solid continuum then has an additional production term from the pseudo chemical reaction, analogous to the collision term appearing in the Boltzmann equation. The mesoscopic and macroscopic balance equations are then derived and by assuming the special constitutive relations the macroscopic equation for the second moment of the distribution function can be obtained.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 368
Author(s):  
Shengguang Zhu ◽  
Liyong Ni

A novel static friction model for the unlubricated contact of random rough surfaces at micro/nano scale is presented. This model is based on the energy dissipation mechanism that states that changes in the potential of the surfaces in contact lead to friction. Furthermore, it employs the statistical theory of two nominally flat rough surfaces in contact, which assumes that the contact between the equivalent rough peaks and the rigid flat plane satisfies the condition of interfacial friction. Additionally, it proposes a statistical coefficient of positional correlation that represents the contact situation between the equivalent rough surface and the rigid plane. Finally, this model is compared with the static friction model established by Kogut and Etsion (KE model). The results of the proposed model agree well with those of the KE model in the fully elastic contact zone. For the calculation of dry static friction of rough surfaces in contact, previous models have mainly been based on classical contact mechanics; however, this model introduces the potential barrier theory and statistics to address this and provides a new way to calculate unlubricated friction for rough surfaces in contact.


Author(s):  
Suryaji R. Bhonsle ◽  
Paul Thompson

Abstract Weibull, log normal, and some other Distribution function models (D.F.M.) have a tendency to deviate from experimental results. This deviation, either exceedingly conservative or nonconservative, is amplified at low probabilities of failure. To remedy such problems a new D.F.M. is derived. It is then used to predict low probabilities of failure. The predictions are consistent with experimental data and are not too conservative or too nonconservative.


2011 ◽  
Vol 1 ◽  
pp. 375-380
Author(s):  
Shu Ai Wan ◽  
Kai Fang Yang ◽  
Hai Yong Zhou

In this paper the important issue of multimedia quality evaluation is concerned, given the unimodal quality of audio and video. Firstly, the quality integration model recommended in G.1070 is evaluated using experimental results. Theoretical analyses aide empirical observations suggest that the constant coefficients used in the G.1070 model should actually be piecewise adjusted for different levels of audio and visual quality. Then a piecewise function is proposed to perform multimedia quality integration under different levels of the audio and visual quality. Performance gain observed from experimental results substantiates the effectiveness of the proposed model.


2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840083 ◽  
Author(s):  
Xuetong Liu ◽  
Jianhua Liu ◽  
Huajiang Ouyang ◽  
Zhenbing Cai ◽  
Jinfang Peng ◽  
...  

The dynamic response of bolted joints subjected to torsional excitation is investigated experimentally and numerically. First, the effects of the initial preload and the angular amplitude on axial force loss of the bolt were studied. Second, the change of hysteresis loops with the increasing number of loading cycles was found under a larger torsional angle. At last, a fine-meshed three-dimensional finite element model was built to simulate the bolted joint under torsional excitation, from which the hysteresis loops were obtained under varying angular amplitudes. The results of numerical analysis are in good agreement with those of experiments.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fei Gao ◽  
Zhen Wang ◽  
Zhu Wen ◽  
Yuguo Ji

The P-α equation of state (EOS) and a nonlinear yield criterion are utilized to characterize the dynamic constitutive behavior of concrete targets subjected to projectile normal penetration. A dynamic cavity expansion model considering the compressibility and nonlinear constitutive relations for concrete material is developed. Then, a theoretical model to calculate the depth of penetration (DOP) for rigid projectile is established. Furthermore, the proposed model is validated based on the available test data as well as the calculation results by the linear compressible EOS and linear yield criterion. This study shows that the proposed model derived using the P-α EOS and nonlinear yield criterion can effectively reflect the plastic mechanical properties of concrete and is also suitable for predicting the DOP of concrete targets. In addition, the influence law of concrete constitutive parameters such as the cohesion strength, shear strength, internal friction coefficient, and elastic limit pressure on the DOP is revealed.


2012 ◽  
Vol 152-154 ◽  
pp. 990-996 ◽  
Author(s):  
Fabio de Angelis

In the present work the evolutive laws and the constitutive relations for a model of nonlocal viscoplasticity are analyzed. Nonlocal dissipative variables and suitable regularization operators are adopted. The proposed model is developed within the framework of the generalized standard material model. Suitable forms of the elastic and dissipative viscoplastic potentials are defined and the associated constitutive relations are specialized. The evolutive laws for the proposed nonlocal viscoplastic model are presented in a general form which can be suitably specialized in order to include different models of nonlocal viscoplasticity.


Sign in / Sign up

Export Citation Format

Share Document