A Numerical and Experimental Study of Distribution of the Residual Stress on the Shot Peened Low Alloy Steel

Author(s):  
Pham Quang Trung ◽  
David Lee Butler ◽  
Sridhar Idapalapati

Shot peening is a cold working process, which is used to enhance the properties of materials, especially the fatigue life as it induces large compressive residual stresses in the subsurface of materials. In this paper, the effect of the shot peening process on the topography of the shot peened surface and the distribution of the residual stresses in the subsurface of the material was systematically investigated. A technique to estimate the shot peening coverage was employed using a finite element model which was further developed using experimental results for increased accuracy. The comparison between the numerical and experimental studies gives a good agreement of the distribution of the residual stresses in the subsurface of the shot peened material. The shot peening pressure and media size are two main factors affecting on the presence of compressive residual stresses in the subsurface of the material.

1998 ◽  
Vol 33 (4) ◽  
pp. 263-274 ◽  
Author(s):  
D J Smith ◽  
C G C Poussard ◽  
M J Pavier

Measurements of residual stresses in 6 mm thick aluminium alloy 2024 plates containing 4 per cent cold worked fastener are made using the Sachs method. The measurements are made on discs extracted from the plates. The measured tangential residual stress distribution adjacent to the hole edge are found to be affected by the disc diameter. The measured residual stresses are also in good agreement with averaged through-thickness predictions of residual stresses from an axisymmetric finite element (FE) model of the cold working process. A finite element analysis is also conducted to simulate disc extraction and then the Sachs method. The measured FE residual stresses from the Sachs simulation are found to be in good agreement with the averaged through-thickness predicted residual stresses. The Sachs simulation was not able to reproduce the detailed near-surface residual stresses found from the finite element model of the cold working process.


2013 ◽  
Vol 768-769 ◽  
pp. 519-525 ◽  
Author(s):  
Sebastjan Žagar ◽  
Janez Grum

The paper deals with the effect of different shot peening (SP) treatment conditions on the ENAW 7075-T651 aluminium alloy. Suitable residual stress profile increases the applicability and life cycle of mechanical parts, treated by shot peening. The objective of the research was to establish the optimal parameters of the shot peening treatment of the aluminium alloy in different precipitation hardened states with regard to residual stress profiles in dynamic loading. Main deformations and main residual stresses were calculated on the basis of electrical resistance. The resulting residual stress profiles reveal that stresses throughout the thin surface layer of all shot peened specimens are of compressive nature. The differences can be observed in the depth of shot peening and the profile of compressive residual stresses. Under all treatment conditions, the obtained maximum value of compressive residual stress ranges between -200 MPa and -300 MPa at a depth between 250 μm and 300 μm. Comparison of different temperature-hardened aluminium alloys shows that changes in the Almen intensity values have greater effect than coverage in the depth and profile of compressive residual stresses. Positive stress ratio of R=0.1 was selected. Wöhler curves were determined in the areas of maximum bending loads between 30 - 65 % of material's tensile strength, measured at thinner cross-sections of individual specimens. The results of material fatigue testing differ from the level of shot peening on the surface layer.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3429 ◽  
Author(s):  
Agnieszka Skoczylas ◽  
Kazimierz Zaleski

In this article, we report the results of experimental studies on the impact of ball burnishing parameters on the roughness, microstructure and microhardness of the surface layer of laser-cut C45 steel parts. We also analysed the distribution of residual stresses generated in the surface layer of these parts. Laser-cut parts often require finishing to improve the quality of their surface. The tests performed in this study were aimed at assessing whether ball burnishing could be used as a finishing operation for parts of this type. Ball burnishing tests were performed on an FV-580a vertical machining centre using a mechanically controlled burnishing tool. The following parameters were varied during the ball burnishing tests: burnishing force Fn, path interval fw and the diameter of the burnishing ball dn. Ball burnishing of laser-cut C45 steel parts reduced the surface roughness parameters Sa and Sz by up to 60% in relation to the values obtained after laser cutting. Finish machining also led to the reorganization of the geometric structure of the surface, resulting in an increase in the absolute value of skewness Ssk. This was accompanied by an increment in microhardness (maximum microhardness increment was ΔHV = 95 HV0.05, and the thickness of the hardened layer was gh = 40 µm) and formation of compressive residual stresses in the surface layer.


2013 ◽  
Vol 433-435 ◽  
pp. 1898-1901
Author(s):  
Li Juan Cao ◽  
Shou Ju Li ◽  
Zi Chang Shangguan

Shot peening is a manufacturing process intended to give components the final shape and to introduce a compressive residual state of stress inside the material in order to increase fatigue life. The modeling and simulation of the residual stress field resulting from the shot peening process are proposed. The behaviour of the peened target material is supposed to be elastic plastic with bilinear characteristics. The results demonstrated the surface layer affected by compressive residual stresses is very thin and the peak is located on the surface.


Author(s):  
Rajesh Prasannavenkatesan ◽  
David L. McDowell

Using a three-dimensional crystal plasticity model for cyclic deformation of lath martensitic steel, a simplified scheme is adopted to simulate the effects of shot peening on inducing initial compressive residual stresses. The model is utilized to investigate the subsequent cyclic relaxation of compressive residual stresses in shot peened lath martensitic gear steel in the high cycle fatigue (HCF) regime. A strategy is identified to model both shot peening and cyclic loading processes for polycrystalline ensembles. The relaxation of residual stress field during cyclic bending is analyzed for strain ratios Rε=0 and −1 for multiple realizations of polycrystalline microstructure. Cyclic microplasticity in favorably oriented martensite grains is the primary driver for the relaxation of residual stresses in HCF. For the case of Rε=−1, the cyclic plasticity occurs throughout the microstructure (macroplasticity) during the first loading cycle, resulting in substantial relaxation of compressive residual stresses at the surface and certain subsurface depths. The initial magnitude of residual stress is observed to influence the degree (percentage) of relaxation. Describing the differential intergranular yielding is necessary to capture the experimentally observed residual stress relaxation trends.


2013 ◽  
Vol 577-578 ◽  
pp. 329-332
Author(s):  
Marco Giglio ◽  
M. Lodi ◽  
L. Giudici

The cold-working expansion methods are extensively used in the aerospace and mechanical industry to obtain forced couplings of steel bushings into holes made on mechanical components, by means of the passage of an oversized mandrel. This work describes a calculation algorithm, able to correlate the selected interference level, as the difference between the maximum radius of the mandrel and the inner radius of the bushing, to the residual stresses expected on the hole surface. The designer, taking into account the different design choices already made, can choose the optimal interference, estimating the uncoupling resistance and the fatigue strength of forced components. Two original and different systems bushing-mandrel, in low and high interference, have been tested for determining the characteristics of fatigue resistance in the finite life part of the Wohlers diagram.The results have been compared with previously estimated data, getting a good agreement of the series. The increase of the adopted interference value determine a corresponding increase of residual stresses on the hole, both in the radial than in the circumferential direction, and an appreciable and predictable improvement of the fatigue strength of components.


Author(s):  
S. Hossain ◽  
C. E. Truman ◽  
D. J. Smith ◽  
M. R. Daymond

This paper presents results from an experimental and numerical study examining the creation of highly triaxial residual stresses in stainless steel. This was motivated by a need to model and understand creep in aged power plant. The residual stresses were introduced by rapid spray water quenching of heated solid stainless steel spheres and cylinders. Finite element (FE) simulations predicted high compressive residual stresses around the surface of the specimens and tensile residual stresses near the centre. Surface residual stresses were measured using the incremental centre-hole drilling (ICHD) technique. Neutron diffraction (ND) was used to measure the interior residual stresses. The measurements were in good agreement with FE predictions. The ND measurements confirmed that a highly triaxial residual stress state existed in the core of the specimens.


Sign in / Sign up

Export Citation Format

Share Document