scholarly journals Selected Properties of the Surface Layer of C45 Steel Parts Subjected to Laser Cutting and Ball Burnishing

Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3429 ◽  
Author(s):  
Agnieszka Skoczylas ◽  
Kazimierz Zaleski

In this article, we report the results of experimental studies on the impact of ball burnishing parameters on the roughness, microstructure and microhardness of the surface layer of laser-cut C45 steel parts. We also analysed the distribution of residual stresses generated in the surface layer of these parts. Laser-cut parts often require finishing to improve the quality of their surface. The tests performed in this study were aimed at assessing whether ball burnishing could be used as a finishing operation for parts of this type. Ball burnishing tests were performed on an FV-580a vertical machining centre using a mechanically controlled burnishing tool. The following parameters were varied during the ball burnishing tests: burnishing force Fn, path interval fw and the diameter of the burnishing ball dn. Ball burnishing of laser-cut C45 steel parts reduced the surface roughness parameters Sa and Sz by up to 60% in relation to the values obtained after laser cutting. Finish machining also led to the reorganization of the geometric structure of the surface, resulting in an increase in the absolute value of skewness Ssk. This was accompanied by an increment in microhardness (maximum microhardness increment was ΔHV = 95 HV0.05, and the thickness of the hardened layer was gh = 40 µm) and formation of compressive residual stresses in the surface layer.

Author(s):  
Вячеслав Безъязычный ◽  
Vyacheslav Bezyazychnyy ◽  
Максим Басков ◽  
Maksim Baskov

The impact of cutter wear-resistant coatings upon cutting process parameters and characteristics of surface layer quality in the parts worked: residual stresses, a degree and a depth of work hardening of a surface layer, surface roughness is investigated.


2021 ◽  
pp. 34-43
Author(s):  
A. A. Chudina

This article describes the basic information about the residual stresses that occur as a result of mechanical processing. The influence of such technological factors as geometric parameters of the cutting part of the tool, physical and chemical properties and structural and phase state of the workpiece material to be processed, cutting modes (feed, cutting speed, cutting depth) and lubricating and cooling technological means on the nature of the distribution of residual stresses in the surface layer of the workpiece is studied. The literature sources that present experimental studies of the influence of the above factors are analyzed. As a result, it was found that the negative front angle contributes to the appearance of compressive residual stresses on the surface. It was established that an increase in the area of the wear surface leads to a decrease in compressive stresses and the appearance of tension stresses. An increase in the cutting speed leads to a decrease in the amount of tension stresses. However, an increase in the speed when turning steel 45 does not lead to compressive residual stresses, as the heat factor will prevail during processing, and when turning steel 309, a high cutting speed will contribute to the hardening of the surface layer and, as a result, the appearance of residual compressive stresses. Depending on the ductility of the material, an increase in the feed can lead to both compressive residual stresses and tension stresses. This is due to the fact that when using other materials, heating can lead to quenching or tempering of the surface layer and, accordingly, to other results that will depend on the phase structural transformations occurring in the material. However, the effect of cutting coolant is ambiguous and will depend on how much heat is released in the cutting area. Thus, knowing the operating conditions of the product, it is possible to adjust the nature of the distribution of residual stresses on the surface by changing certain technological factors.


2020 ◽  
Vol 836 ◽  
pp. 118-123
Author(s):  
S.K. Kargapol’tsev ◽  
V.I. Shastin ◽  
V.E. Gozbenko

The paper reflects the relevance of hardening the working surfaces of the tool, where the surface layer plays a fundamental role. The main factors determining the wear resistance of the tool and their influence on the quality of the processed surface are analyzed. The purpose of the research is to study the effect of laser modification of tool alloys on wear resistance and on the roughness parameters of the machined surface. A small-sized drill bit (steel P6M5) and carbide inserts T15K6 are used as objects of research. The paper presents the results of experimental studies on the impact of laser radiation on the microstructure of materials, indices of wear resistance and quality parameters of the treated surface. It is established that there is a certain relationship between these indices. The modes of laser modification of the tool most acceptable for practical use are determined. Along with an increase in the wear resistance of a metal-cutting tool, a manifestation of the effect of an increase in surface roughness indices is found and experimentally confirmed. It is established that hardening of the surface layer is caused by structural and phase transformations with enhanced physical and mechanical properties, and the roughness indices depend on the degree of dispersion (amorphization) of the modified layer.


Author(s):  
S.A. Zaides ◽  
Quang Le Hong

To restore the shape of low-stiff cylindrical parts such as shafts and axles, straightening by transverse bending with the subsequent processing of workpieces by the method of surface plastic deformation based on the transverse burnishing with smooth plates is proposed. The experimental and calculated results are presented to determine the effect of absolute compression on the main characteristics of the quality of the surface layer of parts such as surface roughness and residual stresses. The analysis of experimental data for the evaluation of the parts after straightening by transverse burnishing showed the following positive changes: a sharp decrease in the initial roughness, the formation of equilibrium residual compressive stresses in the surface layers and ensuring stabilization of the accuracy of the processed part in size and shape. Depending on the magnitude of the absolute reduction, the surface quality increases by 2–3 classes, and rather large compressive residual stresses are formed (up to 375 MPa). The results of the work justify recommending the proposed method of straightening by transverse burnishing with smooth plates for implementation into the technology of machine part restoration.


2021 ◽  
Vol 5 (2) ◽  
pp. 55
Author(s):  
Robert Zmich ◽  
Daniel Meyer

Knowledge of the relationships between thermomechanical process loads and the resulting modifications in the surface layer enables targeted adjustments of the required surface integrity independent of the manufacturing process. In various processes with thermomechanical impact, thermal and mechanical loads act simultaneously and affect each other. Thus, the effects on the modifications are interdependent. To gain a better understanding of the interactions of the two loads, it is necessary to vary thermal and mechanical loads independently. A new process of laser-combined deep rolling can fulfil exactly this requirement. The presented findings demonstrate that thermal loads can support the generation of residual compressive stresses to a certain extent. If the thermal loads are increased further, this has a negative effect on the surface layer and the residual stresses are shifted in the direction of tension. The results show the optimum range of thermal loads to further increase the compressive residual stresses in the surface layer and allow to gain a better understanding of the interactions between thermal and mechanical loads.


2013 ◽  
Vol 768-769 ◽  
pp. 519-525 ◽  
Author(s):  
Sebastjan Žagar ◽  
Janez Grum

The paper deals with the effect of different shot peening (SP) treatment conditions on the ENAW 7075-T651 aluminium alloy. Suitable residual stress profile increases the applicability and life cycle of mechanical parts, treated by shot peening. The objective of the research was to establish the optimal parameters of the shot peening treatment of the aluminium alloy in different precipitation hardened states with regard to residual stress profiles in dynamic loading. Main deformations and main residual stresses were calculated on the basis of electrical resistance. The resulting residual stress profiles reveal that stresses throughout the thin surface layer of all shot peened specimens are of compressive nature. The differences can be observed in the depth of shot peening and the profile of compressive residual stresses. Under all treatment conditions, the obtained maximum value of compressive residual stress ranges between -200 MPa and -300 MPa at a depth between 250 μm and 300 μm. Comparison of different temperature-hardened aluminium alloys shows that changes in the Almen intensity values have greater effect than coverage in the depth and profile of compressive residual stresses. Positive stress ratio of R=0.1 was selected. Wöhler curves were determined in the areas of maximum bending loads between 30 - 65 % of material's tensile strength, measured at thinner cross-sections of individual specimens. The results of material fatigue testing differ from the level of shot peening on the surface layer.


2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Fatima Safi ◽  
Anna M. Aniserowicz ◽  
Heather Colquhoun ◽  
Jill Stier ◽  
Behdin Nowrouzi-Kia

Abstract Background Eating disorders (ED) can reduce quality of life by limiting participation and performance in social and occupational roles, including paid or unpaid work. The association between ED pathologies and work participation and performance must be well understood to strengthen vocational rehabilitation programmes and prevent occupational disruptions in the ED population. The aims of this study are: (1) to examine the degree of association between ED pathologies and work participation and performance in 15-year-olds and older; (2) to highlight the specific ED symptoms that are most correlated with changes in work performance and participation; (3) to compile the most common metrics and assessments used to measure work participation and performance with ED. Methods Medline, Embase, CINAHL, Web of Science, PsycINFO, and Cochrane Library will be searched for observational and experimental studies that meet the following criteria: (1) a clinical sample of typical or atypical ED; (2) paid or unpaid employment or training; (3) an association between ED pathologies and work participation or performance. Unpublished data will also be examined. Title and abstract, and full-text screening will be conducted in duplicate. Risk of bias and quality of evidence assessments will be completed. A random-effect meta-analysis will be performed. Discussion This synthesis can clarify knowledge and gaps around the impact of ED on work functioning, thereby allowing better evaluation, improvements and development of current workplace assessments, interventions, and policies. Trial registration The registration number for this systematic review on PROSPERO is CRD42021255055.


Author(s):  
Андрей Киричек ◽  
Andrey Kirichek ◽  
Дмитрий Соловьев ◽  
Dmitriy Solovyev ◽  
Александр Хандожко ◽  
...  

The problems of analyzing metallographic images and the method of their solution using modern software for the analysis of metallographic images are described. There is given an analysis of microstructure images as the main indicator of the surface layer quality by the example of studying the research results of strain wave hardening combinations and chemical-thermal treatment, in particular the influence of previous strain wave hardening and subsequent thermal and chemical- thermal treatment on the alloy steel microstructure or previous thermal and chemical- thermal treatment and subsequent strain wave hardening. On the basis of the analysis the effectiveness of strain wave hardening and chemical and thermal treatment is established.


2013 ◽  
Vol 433-435 ◽  
pp. 1898-1901
Author(s):  
Li Juan Cao ◽  
Shou Ju Li ◽  
Zi Chang Shangguan

Shot peening is a manufacturing process intended to give components the final shape and to introduce a compressive residual state of stress inside the material in order to increase fatigue life. The modeling and simulation of the residual stress field resulting from the shot peening process are proposed. The behaviour of the peened target material is supposed to be elastic plastic with bilinear characteristics. The results demonstrated the surface layer affected by compressive residual stresses is very thin and the peak is located on the surface.


2010 ◽  
Vol 89-91 ◽  
pp. 53-58
Author(s):  
Sebastjan Žagar ◽  
Janez Grum

In the paper two aluminium alloys, i.e. 6082 and 7075, which were cold hardened by shot peening under different conditions, are treated. Surface hardening was carried out with S170 steel shot of the same diameter, particle hardness being 56 HRC. Other conditions were the operating pressure, mass flow, which provide different Almen intensities. The hardened layer was described by surface integrity. Macroscopic and microscopic analyses consisted in analyses of hardened profiles of hardness, and residual stresses in the thin surface layer. Research results indicated that there were significant differences among the characteristics chosen to describe surface integrity and that they had an important influence on the final condition of the surface layer. With too severe settings of the peening parameters, the surface properties got worse because of damages, which resulted in crack initiation and growth of the existing cracks.


Sign in / Sign up

Export Citation Format

Share Document