scholarly journals Characterization of Interfacial Properties of Graphene-Reinforced Polymer Nanocomposites by Molecular Dynamics-Shear Deformation Model

2018 ◽  
Vol 85 (9) ◽  
Author(s):  
Chanwook Park ◽  
Gun Jin Yun

In this paper, we present an approach for characterizing the interfacial region using the molecular dynamics (MD) simulations and the shear deformation model (SDM). The bulk-level mechanical properties of graphene-reinforced nanocomposites strongly depend on the interfacial region between the graphene and epoxy matrix, whose thickness is about 6.8–10.0 Å. Because it is a challenge to experimentally investigate mechanical properties of this thin region, computational MD simulations have been widely employed. By pulling out graphene from the graphene/epoxy system, pull-out force and atomic displacement of the interfacial region are calculated to characterize the interfacial shear modulus. The same processes are applied to 3% grafted hydroxyl and carboxyl functionalized graphene (OH-FG and COOH-FG)/epoxy (diglycidyl ether of bisphenol F (DGEBF)/triethylenetetramine (TETA)) systems, and influences of the functionalization on the mechanical properties of the interfacial region are studied. Our key finding is that, by functionalizing graphene, the pull-out force moderately increases and the interfacial shear modulus considerably decreases. We demonstrate our results by comparing them with literature values and findings from experimental papers.

2016 ◽  
Vol 36 (3) ◽  
pp. 186-195 ◽  
Author(s):  
P Subba Rao ◽  
K Renji ◽  
MR Bhat

This paper presents molecular dynamics (MD) simulations on the effects of carbon nanotubes (CNTs) without and with chemical functionalization, on the mechanical properties of bisphenol E cyanate ester (BECy) – a potential structural resin. Atomistic models of CNTs, functionalized CNTs (fCNTs), BECy resin, CNT-BECy and fCNT-BECy resins with definite quantity of CNT/fCNT are built. Using these atomistic models, mechanical properties of the above nanosystems are estimated through a computational method involving geometric optimization and equilibration through MD by judiciously establishing various parameters. Adoptability of the approach taken up in this work to model and solve complex nanosystems capturing interactions in the interfacial region between CNT/fCNT and the resin to understand the mechanical behaviour has been highlighted. These investigations have yielded interesting and encouraging results to arrive at optimum quantity of CNTs/fCNTs to be added to achieve enhanced mechanical properties of BECy resin that validate the previous experimental studies carried out by the authors infusing similar quantities of CNTs and fCNTs into BECy.


2014 ◽  
Vol 1700 ◽  
pp. 61-66
Author(s):  
Guttormur Arnar Ingvason ◽  
Virginie Rollin

ABSTRACTAdding single walled carbon nanotubes (SWCNT) to a polymer matrix can improve the delamination properties of the composite. Due to the complexity of polymer molecules and the curing process, few 3-D Molecular Dynamics (MD) simulations of a polymer-SWCNT composite have been run. Our model runs on the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), with a COMPASS (Condensed phase Optimized Molecular Potential for Atomistic Simulations Studies) potential. This potential includes non-bonded interactions, as well as bonds, angles and dihedrals to create a MD model for a SWCNT and EPON 862/DETDA (Diethyltoluenediamine) polymer matrix. Two simulations were performed in order to test the implementation of the COMPASS parameters. The first one was a tensile test on a SWCNT, leading to a Young’s modulus of 1.4 TPa at 300K. The second one was a pull-out test of a SWCNT from an originally uncured EPON 862/DETDA matrix.


2017 ◽  
Vol 757 ◽  
pp. 62-67 ◽  
Author(s):  
Kritsanachai Leelachai ◽  
Supissara Ruksanak ◽  
Tarakol Hongkeab ◽  
Supakeat Kambutong ◽  
Raymond A. Pearson ◽  
...  

In this study, diglycidyl ether of bisphenol A (DGEBA) cured cycloaliphatic polyamine was modified with functionalized celluloses for improved thermal and mechanical properties. Three different types of surface-modified cellulose, polyacrylamide-g-cellulose (PGC), aminopropoxysilane-g-cellulose (SGC), and carboxymethyl cellulose (CMC), were investigated and used as reinforcing agents in epoxy resins. The storage modulus of these modified epoxy systems was found to significantly increase with addition of cellulose fillers (up to 1 wt. % cellulose content). An improved fracture toughness (KIC) was also observed with increasing cellulose loading content with PGC and SGC. Among the surface-modified celluloses, epoxy modified with SGC was found to have the highest fracture toughness followed by PGC and CMC at 1.0 wt.% cellulose addition due to the chemical surface compatibility. The toughening mechanisms of the cellulose/epoxy composites, measured by scanning electron microscopy (SEM), revealed that fiber-debonding, fiber-bridging, and fiber-pull out were responsible for increased toughness.


2015 ◽  
Vol 817 ◽  
pp. 797-802 ◽  
Author(s):  
Cai Jiang ◽  
Jian Wei Zhang ◽  
Shao Feng Lin ◽  
Su Ju ◽  
Da Zhi Jiang

Molecular dynamics (MD) simulations on three single walled carbon nanotube (SWCNT) reinforced epoxy resin composites were conducted to study the influence of SWCNT type on the glass transition temperature (Tg) of the composites. The composite matrix is cross-linked epoxy resin based on the epoxy monomers bisphenol A diglycidyl ether (DGEBA) cured by diaminodiphenylmethane (DDM). MD simulations of NPT (constant number of particles, constant pressure and constant temperature) dynamics were carried out to obtain density as a function of temperature for each composite system. The Tg was determined as the temperature corresponding to the discontinuity of plot slopes of the densityvsthe temperature. In order to understand the motion of polymer chain segments above and below the Tg, various energy components and the MSD at various temperatures of the composites were investigated and their roles played in the glass transition process were analyzed. The results show that the Tg of the composites increases with increasing aspect ratio of the embedded SWCNT


Author(s):  
Peyman Honarmandi ◽  
Philip Bransford ◽  
Roger D. Kamm

Mechanical properties of biomolecules and their response to mechanical forces may be studied using Molecular Dynamics (MD) simulations. However, high computational cost is a primary drawback of MD simulations. This paper presents a computational framework based on the integration of the Finite Element Method (FEM) with MD simulations to calculate the mechanical properties of polyalanine α-helix proteins. In this method, proteins are treated as continuum elastic solids with molecular volume defined exclusively by their atomic surface. Therefore, all solid mechanics theories would be applicable for the presumed elastic media. All-atom normal mode analysis is used to calculate protein’s elastic stiffness as input to the FEM. In addition, constant force molecular dynamics (CFMD) simulations can be used to predict other effective mechanical properties, such as the Poisson’s Ratio. Force versus strain data help elucidate the mechanical behavior of α-helices upon application of constant load. The proposed method may be useful in identifying the mechanical properties of any protein or protein assembly with known atomic structure.


2019 ◽  
Vol 21 (31) ◽  
pp. 17393-17399 ◽  
Author(s):  
Yuxin Zhao ◽  
Xiaoyi Liu ◽  
Jun Zhu ◽  
Sheng-Nian Luo

The mechanical properties of graphene–Cu nanolayered (GCuNL) composites under bend loading are investigated via an energy-based analytical model and molecular dynamics (MD) simulations.


Volume 4 ◽  
2004 ◽  
Author(s):  
Aaron P. Wemhoff ◽  
Van P. Carey

Surface tension determination of liquid-vapor interfaces of polyatomic fluids using traditional methods has shown to be difficult due to the requirement of evaluating complex intermolecular potentials. However, analytical techniques have recently been developed that determine surface tension solely by means of the characteristics of the interfacial region between the bulk liquid and vapor regions. A post-simulation application of the excess free energy density integration (EFEDI) method was used for analysis of the resultant density profile of molecular dynamics (MD) simulations of argon using a simple Lennard-Jones potential and diatomic nitrogen using a two-center Lennard-Jones potential. MD simulations were also run for an approximation of nitrogen using the simple Lennard-Jones potential. In each MD simulation, a liquid film was initialized between vapor regions and NVE-type simulations were run to equilibrium. The simulation domain was divided into bins across the interfacial region for fluid density collection, and the resultant interfacial region density profile was used for surface tension evaluation. Application of the EFEDI method to these MD simulation results exhibited good approximations to surface tension as a function of temperature for both a simple and complex potential.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Ningbo Liao ◽  
Ping Yang ◽  
Miao Zhang ◽  
Wei Xue

Heat transfer across the interfaces of dissimilar materials is a critical consideration in a wide variety of scientific and engineering applications. In this paper, molecular dynamics (MD) simulations are conducted to investigate the effects of thermal loading on mechanical properties of Al–Cu and Cr–Cu interfaces. The mechanical properties are investigated by MD simulations of nanoindentation. Both the results of MD simulations and experiments show the Young’s modulus decrease after thermal cycling, and the Cr–Cu interface is more sensitive to the thermal loading than the Al–Cu interface. The thermal loading and mechanical test models proposed here can be used to evaluate interfacial properties under the effects of heat transferring.


2021 ◽  
Author(s):  
Maximilian Ries ◽  
Paul Steinmann ◽  
Sebastian Pfaller

Nano-filled polymers are becoming more and more important to meet the continuously growing requirements of modern engineering problems. The investigation of these composite materials at the molecular level, however, is either prohibitively expensive or just impossible. Multiscale approaches offer an elegant way to analyze such nanocomposites by significantly reducing computational costs compared to fully molecular simulations.When coupling different time and length scales, however, it is in particular important to ensure that the same material description is applied at each level of resolution.The Capriccio method, for instance, couples a particle domain modeled with molecular dynamics (MD) with a finite element based continuum description and has been used i.a. to investigate the effects of nano-sized silica additives embedded in atactic polystyrene (PS). However, a simple hyperelastic constitutive law is used so far for the continuum description which is not capable to fully match the behavior of the particle domain. To overcome this issue and to enable further optimization of the coupling scheme, the material model used for the continuum should be derived directly from pure MD simulations under thermodynamic conditions identical to those used by the Capriccio method.To this end, we analyze the material response of pure PS under uniaxial deformation using strain-controlled MD simulations. Analogously, we perform simulations under pure shear deformation to obtain a comprehensive understanding of the material behavior.As a result, the present PS shows viscoelastic characteristics for small strains, whereas viscoplasticity is observed for larger deformations. The insights gained and data generated are used to select a suitable material model whose parameters have to be identified in a subsequent parameter optimization.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Liang Zhang ◽  
Cheng Lu ◽  
Linqing Pei ◽  
Xing Zhao ◽  
Jie Zhang ◽  
...  

Grain boundary (GB) can serve as an efficient sink for radiation-induced defects, and therefore nanocrystalline materials containing a large fraction of grain boundaries have been shown to have improved radiation resistance compared with their polycrystalline counterparts. However, the mechanical properties of grain boundaries containing radiation-induced defects such as interstitials and vacancies are not well understood. In this study, we carried out molecular dynamics simulations with embedded-atom method (EAM) potential to investigate the interaction of Σ5(210)/[001] symmetric tilt GB in Cu with various amounts of self-interstitial atoms. The mechanical properties of the grain boundary were evaluated using a bicrystal model by applying shear deformation and uniaxial tension. Simulation results showed that GB migration and GB sliding were observed under shear deformation depending on the number of interstitial atoms that segregated on the boundary plane. Under uniaxial tension, the grain boundary became a weak place after absorbing self-interstitial atoms where dislocations and cracks were prone to nucleate.


Sign in / Sign up

Export Citation Format

Share Document