A Model for Surface-Film Lubricated Cold Rolling Incorporating Interdependence of Mechanics, Heat Transfer, and Surface-Film Lubrication

2018 ◽  
Vol 141 (1) ◽  
Author(s):  
L. Chang ◽  
Yeau-Ren Jeng

This paper aims to establish a theoretical feasibility of metal cold rolling with only surface-film boundary lubrication. To this end, a mathematical model for surface-film lubricated cold rolling is developed. It is formulated to factor in the interdependence of mechanics, heat transfer, and surface-film lubrication with three submodels: the lubrication-friction model, the stress-deformation model, and the thermal model. Governing equations are obtained based on fundamental physics of the rolling process and tribochemistry of the surface-film lubrication. The equations are solved simultaneously with full numerical methods of solutions. Sample results are presented to evaluate the model and to show the theoretical potential of the surface-film lubrication for cold rolling. The model may be used as a theoretical tool to aid the research and development of surface-film lubrication technology for cold rolling. It may be further developed in conjunction with precision experiments.

2014 ◽  
Vol 1049-1050 ◽  
pp. 916-919
Author(s):  
Zhang Xian Zhao ◽  
Dong Cheng Wang ◽  
Hong Min Liu

In order to automatically set the shape target curve, a model based on shape control theory is put forward. By coupling the shape forecast model and the shape discrimination model, the practical and strict shape target curve is researched. By combining strip plastic deformation model and rolls elastic deformation model, the shape forecast model is built. The shape discrimination is based on the strip element method. The main idea of the shape target curve is to minimize the shape crown in the first few passes on the condition that the strip is not unstable, in the last two passes to keep the good shape under the natural shape crown. Taking five-pass six-high rolling mill as an example, the convex strip is analyzed. The simulation and calculation results prove the validity and feasible of the shape target curve setting model. This model develops the shape target theory and lays the foundation of application of shape target curve in the rolling process of cold rolling.


2020 ◽  
Vol 14 ◽  
Author(s):  
Xiao-bin Fan ◽  
Hao Li ◽  
Yu Jiang ◽  
Bing-xu Fan ◽  
Liang-jing Li

Background: Rolling mill vibration mechanism is very complex, and people haven't found a satisfactory vibration control method. Rolling interface is one of the vibration sources of the rolling mill system, and its friction and lubrication state has a great impact on the vibration of the rolling mill system. It is necessary to establish an accurate friction model for unsteady lubrication process of roll gap and a nonlinear vibration dynamic model for rolling process. In addition, it is necessary to obtain more direct and real rolling mill vibration characteristics from the measured vibration signals, and then study the vibration suppression method and design the vibration suppression device. Methods: This paper summarizes the friction lubrication characteristics of rolling interface and its influence on rolling mill vibration, as well as the dynamic friction model of rolling interface, the tribological model of unsteady lubrication process of roll gap, the non-linear vibration dynamic model of rolling process, the random and non-stationary dynamic behavior of rolling mill vibration, etc. At the same time, the research status of rolling mill vibration testing technology and vibration suppression methods were summarized. Time-frequency analysis of non-stationary vibration signals was reviewed, such as wavelet transform, Wigner-Ville distribution, empirical mode decomposition, blind source signal extraction, rolling vibration suppression equipment development. Results: The lubrication interface of the roller gap under vibration state presents unsteady dynamic characteristics. The signals generated by the vibration must be analyzed in time and frequency simultaneously. In the aspect of vibration suppression of rolling mill, the calculation of inherent characteristics should be carried out in the design of rolling mill to avoid dynamic defects such as resonance. When designing or upgrading the mill structure, it is necessary to optimize the structure of the work roll bending and roll shifting system, such as designing and developing the automatic adjustment mechanism of the gap between the roller bearing seat and the mill stand, adding floating support device to the drum shaped toothed joint shaft, etc. In terms of rolling technology, rolling vibration can be restrained by improving roll lubrication, reasonably distributing rolling force of each rolling mill, reducing rolling force of vibration prone rolling mill, increasing entrance temperature, reducing rolling inlet tension, reducing strip outlet temperature and reasonably arranging roll diameter. The coupling vibration can also be suppressed by optimizing the hydraulic servo system and the frequency conversion control of the motor. Conclusion: Under the vibration state, the lubrication interface of roll gap presents unsteady dynamic characteristics. The signal generated by vibration must be analyzed by time-frequency distribution. In the aspect of vibration suppression of rolling mill, the calculation of inherent characteristics should be carried out in the design of rolling mill to avoid dynamic defects such as resonance. It is necessary to optimize the structure of work roll bending and roll shifting system when designing or reforming the mill structure. In rolling process, rolling vibration can be restrained by improving roll lubrication, reasonably distributing rolling force of each rolling mill, increasing billet temperature, reasonably arranging roll diameter and reducing rolling inlet tension. Through the optimization of the hydraulic servo system and the frequency conversion control of the motor, the coupling vibration can be suppressed. The paper has important reference significance for vibration suppression of continuous rolling mill and efficient production of high quality strip products.


2021 ◽  
Vol 13 (5) ◽  
pp. 2590
Author(s):  
S. A. M. Mehryan ◽  
Kaamran Raahemifar ◽  
Leila Sasani Gargari ◽  
Ahmad Hajjar ◽  
Mohamad El Kadri ◽  
...  

A Nano-Encapsulated Phase-Change Material (NEPCM) suspension is made of nanoparticles containing a Phase Change Material in their core and dispersed in a fluid. These particles can contribute to thermal energy storage and heat transfer by their latent heat of phase change as moving with the host fluid. Thus, such novel nanoliquids are promising for applications in waste heat recovery and thermal energy storage systems. In the present research, the mixed convection of NEPCM suspensions was addressed in a wavy wall cavity containing a rotating solid cylinder. As the nanoparticles move with the liquid, they undergo a phase change and transfer the latent heat. The phase change of nanoparticles was considered as temperature-dependent heat capacity. The governing equations of mass, momentum, and energy conservation were presented as partial differential equations. Then, the governing equations were converted to a non-dimensional form to generalize the solution, and solved by the finite element method. The influence of control parameters such as volume concentration of nanoparticles, fusion temperature of nanoparticles, Stefan number, wall undulations number, and as well as the cylinder size, angular rotation, and thermal conductivities was addressed on the heat transfer in the enclosure. The wall undulation number induces a remarkable change in the Nusselt number. There are optimum fusion temperatures for nanoparticles, which could maximize the heat transfer rate. The increase of the latent heat of nanoparticles (a decline of Stefan number) boosts the heat transfer advantage of employing the phase change particles.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 187
Author(s):  
Bo Zhang ◽  
Li Meng ◽  
Guang Ma ◽  
Ning Zhang ◽  
Guobao Li ◽  
...  

Twinning behaviors in grains during cold rolling have been systematically studied in preparing ultra-thin grain-oriented silicon steel (UTGO) using a commercial glassless grain-oriented silicon steel as raw material. It is found that the twinning system with the maximum Schmid factor and shear mechanical work would be activated. The area fraction of twins increased with the cold rolling reduction. The orientations of twins mainly appeared to be α-fiber (<110>//RD), most of which were {001}<110> orientation. Analysis via combining deformation orientation simulation and twinning orientation calculation suggested that {001}<110> oriented twinning occurred at 40–50% rolling reduction. The simulation also confirmed more {100} <011> oriented twins would be produced in the cold rolling process and their orientation also showed less deviation from ideal {001}<110> orientation when a raw material with a higher content of exact Goss oriented grains was used.


Sign in / Sign up

Export Citation Format

Share Document