Theoretical Analysis and Numerical Optimization of a Wearable Spring-Clutch Mechanism for Reducing Metabolic Energy Cost During Human Walking

2018 ◽  
Vol 10 (6) ◽  
Author(s):  
Roee Keren ◽  
Yizhar Or

There is a growing interest in assistive wearable devices for laden walking, with applications to civil hiking or military soldiers carrying heavy loads in outdoor rough terrains. While the solution of powered exoskeleton is known to be heavy and energy consuming, recent works presented wearable light-weight (semi-)passive elements based on elastic springs engaged by timed clutches. In this work, we theoretically study the dynamics of a five-link model of a human walker with point feet, using numerical simulations. We propose a novel mechanism of a spring and two triggered clutches, which enables locking the spring with stored energy while the device's length can change freely. For a given gait of joint angles trajectories, we numerically optimize the spring parameters and clutch timing for minimizing the metabolic energy cost. We show that a cleverly designed device can, in theory, lead to a drastic reduction in metabolic energy expenditure.

2013 ◽  
Vol 38 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Benjamin J Darter ◽  
Jason M Wilken

Background:Technological advances in prosthetic design include the use of microprocessors that adapt device performance based on user motion. The Proprio ankle unit prepositions the foot to adjust for walking on slopes and increases foot clearance during swing to minimize gait deviations.Study design:Comparative analysis.Objectives:To investigate the effect of a prosthesis with adaptive ankle motion on physiological gait performance during slope walking.Methods:Six persons with a unilateral transtibial amputation completed treadmill walking tests at three slopes (−5°, 0°, and 5°). The participants were tested wearing a customary device, active Proprio (Pon), and an identical inactivated Proprio (Poff).Results:Metabolic energy expenditure, energy cost for walking, and rating of walking difficulty were not statistically different between the Pon and Poff for all tested slopes. However, for slope descent, energy expenditure and energy cost for walking improved significantly by an average of 10%–14% for both the Pon and Poff compared to the customary limb. Rating of walking difficulty also showed an improvement with slope descent for both the Pon and Poff compared to the customary device. An improvement with slope ascent was found for Pon compared to the customary limb only.Conclusions:Adaptive ankle motion provided no meaningful physiological benefit during slope walking. The Proprio was, however, less demanding than the customary device for slope descent. Differences in the mechanical properties of the prosthetic feet likely contributed to the changes.Clinical relevanceWhile the adaptive ankle motion did not affect metabolic energy expenditure or energy cost for walking, the results suggest close attention should be paid to the mechanical properties of the foot component. Assessment of gait on nonlevel surfaces is recommended to better understand the implications of different prosthetic design features.


Gerontology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Rebecca L. Krupenevich ◽  
Owen N. Beck ◽  
Gregory S. Sawicki ◽  
Jason R. Franz

Older adults walk slower and with a higher metabolic energy expenditure than younger adults. In this review, we explore the hypothesis that age-related declines in Achilles tendon stiffness increase the metabolic cost of walking due to less economical calf muscle contractions and increased proximal joint work. This viewpoint may motivate interventions to restore ankle muscle-tendon stiffness, improve walking mechanics, and reduce metabolic cost in older adults.


1998 ◽  
Vol 274 (3) ◽  
pp. E397-E402 ◽  
Author(s):  
Michael C. Hogan ◽  
Erica Ingham ◽  
S. Sadi Kurdak

It has been suggested that during a skeletal muscle contraction the metabolic energy cost at the onset may be greater than the energy cost related to holding steady-state force. The purpose of the present study was to investigate the effect of contraction duration on the metabolic energy cost and fatigue process in fully perfused contracting muscle in situ. Canine gastrocnemius muscle ( n = 6) was isolated, and two contractile periods (3 min of isometric, tetanic contractions with 45-min rest between) were conducted by each muscle in a balanced order design. The two contractile periods had stimulation patterns that resulted in a 1:3 contraction-to-rest ratio, with the difference in the two contractile periods being in the duration of each contraction: short duration 0.25-s stimulation/0.75-s rest vs. long duration 1-s stimulation/3-s rest. These stimulation patterns resulted in the same total time of stimulation, number of stimulation pulses, and total time in contraction for each 3-min period. Muscle O2 uptake, the fall in developed force (fatigue), the O2 cost of developed force, and the estimated total energy cost (ATP utilization) of developed force were significantly greater ( P < 0.05) with contractions of short duration. Lactate efflux from the working muscle and muscle lactate concentration were significantly greater with contractions of short duration, such that the calculated energy derived from glycolysis was three times greater in this condition. These results demonstrate that contraction duration can significantly affect both the aerobic and anaerobic metabolic energy cost and fatigue in contracting muscle. In addition, it is likely that the greater rate of fatigue with more rapid contractions was a result of elevated glycolytic production of lactic acid.


2019 ◽  
Vol 57 (3) ◽  
pp. 283-305 ◽  
Author(s):  
Konstantina P. POULIANITI ◽  
George HAVENITH ◽  
Andreas D. FLOURIS
Keyword(s):  

2021 ◽  
Vol 17 (11) ◽  
pp. e1009608
Author(s):  
Ryan T. Schroeder ◽  
Arthur D. Kuo

The energetic economy of running benefits from tendon and other tissues that store and return elastic energy, thus saving muscles from costly mechanical work. The classic “Spring-mass” computational model successfully explains the forces, displacements and mechanical power of running, as the outcome of dynamical interactions between the body center of mass and a purely elastic spring for the leg. However, the Spring-mass model does not include active muscles and cannot explain the metabolic energy cost of running, whether on level ground or on a slope. Here we add explicit actuation and dissipation to the Spring-mass model, and show how they explain substantial active (and thus costly) work during human running, and much of the associated energetic cost. Dissipation is modeled as modest energy losses (5% of total mechanical energy for running at 3 m s-1) from hysteresis and foot-ground collisions, that must be restored by active work each step. Even with substantial elastic energy return (59% of positive work, comparable to empirical observations), the active work could account for most of the metabolic cost of human running (about 68%, assuming human-like muscle efficiency). We also introduce a previously unappreciated energetic cost for rapid production of force, that helps explain the relatively smooth ground reaction forces of running, and why muscles might also actively perform negative work. With both work and rapid force costs, the model reproduces the energetics of human running at a range of speeds on level ground and on slopes. Although elastic return is key to energy savings, there are still losses that require restorative muscle work, which can cost substantial energy during running.


Sign in / Sign up

Export Citation Format

Share Document