scholarly journals On the Application of the Multiple Scales Method on Electrostatically Actuated Resonators

Author(s):  
Saad Ilyas ◽  
Feras K. Alfosail ◽  
Mohammad I. Younis

We investigate modeling the dynamics of an electrostatically actuated resonator using the perturbation method of multiple time scales (MTS). First, we discuss two approaches to treat the nonlinear parallel-plate electrostatic force in the equation of motion and their impact on the application of MTS: expanding the force in Taylor series and multiplying both sides of the equation with the denominator of the forcing term. Considering a spring–mass–damper system excited electrostatically near primary resonance, it is concluded that, with consistent truncation of higher-order terms, both techniques yield same modulation equations. Then, we consider the problem of an electrostatically actuated resonator under simultaneous superharmonic and primary resonance excitation and derive a comprehensive analytical solution using MTS. The results of the analytical solution are compared against the numerical results obtained by long-time integration of the equation of motion. It is demonstrated that along with the direct excitation components at the excitation frequency and twice of that, higher-order parametric terms should also be included. Finally, the contributions of primary and superharmonic resonance toward the overall response of the resonator are examined.

Author(s):  
Germain L. Ostlguy ◽  
Patrice Lavigne

Abstract The non-stationary parametric response of a rectangular plate during a logarithmic sweep of the excitation frequency through a system resonance is studied using five different techniques of solution. Considering only the case of principal parametric resonance, the continuous system is spatially discretized by means of a single-term modal approximation for the lateral displacement. The general form of the resulting nonlinear temporal equation of motion for the damped parametric vibrations in any spatial mode is analyzed using the multiple time scales method and the method of asymptotic series expansion developed by Mitropolsky, in the first and second approximation. The non-stationary response of the plate during transition through parametric resonances is also evaluated by direct integration of the temporal equation of motion and the results obtained by the different techniques are compared. The non-stationary response displays several phenomena depending on the conditions of in-plane loading, the amount of damping, the initial conditions, and the rate as well as the direction of the sweep. The validity of these results is ascertained experimentally.


Author(s):  
Dumitru I. Caruntu ◽  
Reynaldo Oyervides

This paper investigates the voltage-amplitude response of soft AC electrostatically actuated M/NEMS clamped circular plates. AC frequency is near half natural frequency of the plate. This results in primary resonance. The system is analytically modeled using the Method of Multiple Scales (MMS). The system is assumed weakly nonlinear. The behavior of the system including pull-in instability as the AC voltage is swept up and down while the excitation frequency is constant is reported. The effects of detuning frequency, damping, Casimir force, and van der Waals force are reported as well.


Author(s):  
Ali K Hoshiar ◽  
Hamed Raeisifard

In this article, a nonlinear analysis for a micro-system under electrostatic and piezoelectric excitations is presented. The micro-system beam is assumed as an elastic Euler-Bernoulli beam with clamped-free end conditions. The dynamic equations of this model have been derived by using the Hamilton method and considering the nonlinear inertia, curvature, piezoelectric and electrostatic terms. The static and dynamic solutions have been achieved by using the Galerkin method and the multiple-scales perturbation approach, respectively. The results are compared with numerical and other existing experimental results. By studying the primary resonance excitation, the effects of different parameters such as geometry, material, and excitations voltage on the system’s softening and hardening behaviors are evaluated. In an electrostatically actuated micro-system, it was showed that the nonlinear behavior occurs in frequency response as softening effect. In this paper, it is demonstrated that by applying a suitable piezoelectric DC voltage, this nonlinear effects can be controlled and altered to a linear domain. This model can be used to design a nano- or micro-scale smart device.


Author(s):  
Rudi R. Pusenjak ◽  
Jurij Avsec ◽  
Maks M. Oblak

The paper presents the extended Lindstedt-Poincare (ELP) method, which applies multiple time scales to treat nonstationary oscillations arising in dynamical systems with cubic non-linearities. The passage through the resonance is conducted to study deviations from the stationary response. The method is applied to the dynamical systems such as Duffing oscillator and van der Pol oscillator, whereat effects of varying the excitation frequency and varying the excitation amplitudes, respectively are studied. It is shown that application of multiple scales benefits to find more accurate expressions of stationary responses in comparison to the conventional Lindstedt-Poincare method and consequently contributes to the versatile and effective calculation of the nonstationary frequency response curves.


Author(s):  
Hassen M. Ouakad ◽  
Mohammad I. Younis ◽  
Fadi M. Alsaleem ◽  
Ronald Miles ◽  
Weili Cui

In this paper, we investigate theoretically and experimentally the static and dynamic behaviors of electrostatically actuated clamped-clamped micromachined arches when excited by a DC load superimposed to an AC harmonic load. A Galerkin based reduced-order model is used to discretize the distributed-parameter model of the considered shallow arch. The natural frequencies of the arch are calculated for various values of DC voltages and initial rises of the arch. The forced vibration response of the arch to a combined DC and AC harmonic load is determined when excited near its fundamental natural frequency. For small DC and AC loads, a perturbation technique (the method of multiple scales) is also used. For large DC and AC, the reduced-order model equations are integrated numerically with time to get the arch dynamic response. The results show various nonlinear scenarios of transitions to snap-through and dynamic pull-in. The effect of rise is shown to have significant effect on the dynamical behavior of the MEMS arch. Experimental work is conducted to test polysilicon curved microbeam when excited by DC and AC loads. Experimental results on primary resonance and dynamic pull-in are shown and compared with the theoretical results.


1973 ◽  
Vol 40 (1) ◽  
pp. 121-126 ◽  
Author(s):  
S. Atluri

This investigation treats the large amplitude transverse vibration of a hinged beam with no axial restraints and which has arbitrary initial conditions of motion. Nonlinear elasticity terms arising from moderately large curvatures, and nonlinear inertia terms arising from longitudinal and rotary inertia of the beam are included in the nonlinear equation of motion. Using a Galerkin variational method and a modal expansion, the problem is reduced to a system of coupled nonlinear ordinary differential equations which are solved for arbitrary initial conditions, using the perturbation procedure of multiple-time scales. The general response and frequency-amplitude relations are derived theoretically. Comparison with previously published results is made.


Author(s):  
Mohammad A. Bukhari ◽  
Oumar R. Barry

This paper presents the nonlinear vibration of a simply supported Euler-Bernoulli beam with a mass-spring system subjected to a primary resonance excitation. The nonlinearity is due to the mid-plane stretching and cubic spring stiffness. The equations of motion and the boundary conditions are derived using Hamiltons principle. The nonlinear system of equations are solved using the method of multiple scales. Explicit expressions are obtained for the mode shapes, natural frequencies, nonlinear frequencies, and frequency response curves. The validity of the results is demonstrated via comparison with results in the literature. Exact natural frequencies are obtained for different locations, rotational inertias, and masses.


Author(s):  
Dumitru I. Caruntu ◽  
Ezequiel Juarez

Abstract This paper deals with the frequency-amplitude response of primary resonance of electrostatically actuated Double-Walled Carbon Nanotubes (DWCNT) and Single-Walled Carbon Nanotubes (SWCNT) cantilever resonators. Their responses are compared. Both the DWCNT and SWCNT are modeled as Euler-Bernoulli cantilever beams. Electrostatic and damping forces are applied on both types of resonators. An AC voltage provides a soft electrostatic actuation. For the DWCNT, intertube van der Waals forces are present between the carbon nanotubes, coupling the deflections of the tubes and acting as a nonlinear spring between the two carbon nanotubes. Electrostatic (for SWCNT and DWCNT) and intertube van der Waals (for DWCNT) forces are nonlinear. Both resonators undergo nonlinear parametric excitation. The Method of Multiple Scales (MMS) is used to investigate the systems under soft excitations and weak nonlinearities. A 2-Term Reduced-Order-Model (ROM) is numerically solved for stability analysis using AUTO-07P, a continuation and bifurcation software. The coaxial vibrations of DWCNT are considered in this work, in order to draw comparisons between DWCNT and SWCNT. Effects of damping and voltage of the frequency-amplitude response are reported.


Author(s):  
Dumitru I. Caruntu ◽  
Ezequiel Juarez

This paper investigates electrostatically actuated Double Walled Carbon Nanotubes (DWCNT) cantilever biosensors using the Method of Multiple Scales (MMS) and the Harmonic Balance Method (HBM). Forces acting on the outer tube of the DWCNT are electrostatic, damping, and van der Waals, while only van der Waals acts on the inner tube. The electrostatic actuation is provided by a soft AC voltage. Van der Waals forces are present between the carbon nanotubes, coupling the deflections of the tubes; herein, for modal coordinate transformation, only the linear term of the van der Waals force will be considered. The nonlinearity of the motion is produced by the electrostatic and van der Waals forces. The DWCNT undergoes nonlinear parametric dynamics. MMS is employed to investigate the system under soft excitations and/or weak nonlinearities. The frequency-amplitude response is found in the case of primary resonance. DWCNTs are modelled after the Euler-Bernoulli cantilever beam. The expected nonlinear dynamic behavior is important to improve DWCNT resonator sensitivity in the application of mass sensing.


Author(s):  
Dumitru I. Caruntu ◽  
Cone S. Salinas Trevino

This paper deals with electrostatically actuated Carbon NanoTubes (CNT) cantilevers for bio-sensing applications. There are three kinds of forces acting on the CNT cantilever: electrostatic, elastostatic, and van der Waals. The van der Waals forces are significant for values of 50 nm or lower of the gap between the CNT and the ground plate. As both forces electrostatic and van der Waals are nonlinear, and the CNT electrostatic actuation is given by AC voltage, the CNT dynamics is nonlinear parametric. The method of multiple scales is used to investigate the system under soft excitations and/or weakly nonlinearities. The frequency-amplitude and frequency-phase behavior are found in the case of primary resonance. The CNT bio-sensor is to be used for mass detection applications.


Sign in / Sign up

Export Citation Format

Share Document