A Fast-Converging Ensemble Infilling Approach Balancing Global Exploration and Local Exploitation: The Go-Inspired Hybrid Infilling Strategy

2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Liye Lv ◽  
Maolin Shi ◽  
Xueguan Song ◽  
Wei Sun ◽  
Jie Zhang

AbstractInfilling strategies have been proposed for decades and are widely used in engineering problems. It is still challenging to achieve an effective trade-off between global exploration and local exploitation. In this paper, a novel decision-making infilling strategy named the Go-inspired hybrid infilling (Go-HI) strategy is proposed. The Go-HI strategy combines multiple individual infilling strategies, such as the mean square error (MSE), expected improvement (EI), and probability of improvement (PoI) strategies. The Go-HI strategy consists of two major parts. In the first part, a tree-like structure consisting of several subtrees is built. In the second part, the decision value for each subtree is calculated using a cross-validation (CV)-based criterion. Key factors that significantly influence the performance of the Go-HI strategy, such as the number of component infilling strategies and the tree depth, are explored. Go-HI strategies with different component strategies and tree depths are investigated and also compared with four baseline adaptive sampling strategies through three numerical functions and one engineering case. Results show that the number of component infilling strategies exerts a larger influence on the global and local performance than the tree depth; the Go-HI strategy with two component strategies performs better than the ones with three; the Go-HI strategy always outperforms the three component infilling strategies and the other four benchmark strategies in global performance and robustness and saves much computational cost.

2021 ◽  
Author(s):  
Ana Barbosa Aguiar ◽  
Jennifer Waters ◽  
Martin Price ◽  
Gordon Inverarity ◽  
Christine Pequignet ◽  
...  

<div> <p>The importance of oceans for atmospheric forecasts as well as climate simulations is being increasingly recognised with the advent of coupled ocean / atmosphere forecast models. Having comparable resolutions in both domains maximises the benefits for a given computational cost. The Met Office has recently upgraded its operational global ocean-only model from an eddy permitting 1/4 degree tripolar grid (ORCA025) to the eddy resolving 1/12 degree ORCA12 configuration while retaining 1/4 degree data assimilation. </p> </div><div> <p>We will present a description of the ocean-only ORCA12 system, FOAM-ORCA12, alongside some initial results. Qualitatively, FOAM-ORCA12 seems to represent better (than FOAM-ORCA025) the details of mesoscale features in SST and surface currents. Overall, traditional statistical results suggest that the new FOAM-ORCA12 system performs similarly or slightly worse than the pre-existing FOAM-ORCA025. However, it is known that comparisons of models running at different resolutions suffer from a double penalty effect, whereby higher-resolution models are penalised more than lower-resolution models for features that are offset in time and space. Neighbourhood verification methods seek to make a fairer comparison using a common spatial scale for both models and it can be seen that, as neighbourhood sizes increase, ORCA12 consistently has lower continuous ranked probability scores (CRPS) than ORCA025. CRPS measures the accuracy of the pseudo-ensemble created by the neighbourhood method and generalises the mean absolute error measure for deterministic forecasts. </p> </div><div> <p>The focus over the next year will be on diagnosing the performance of both the model and assimilation. A planned development that is expected to enhance the system is the update of the background-error covariances used for data assimilation. </p> </div>


2020 ◽  
Author(s):  
Jingbai Li ◽  
Patrick Reiser ◽  
André Eberhard ◽  
Pascal Friederich ◽  
Steven Lopez

<p>Photochemical reactions are being increasingly used to construct complex molecular architectures with mild and straightforward reaction conditions. Computational techniques are increasingly important to understand the reactivities and chemoselectivities of photochemical isomerization reactions because they offer molecular bonding information along the excited-state(s) of photodynamics. These photodynamics simulations are resource-intensive and are typically limited to 1–10 picoseconds and 1,000 trajectories due to high computational cost. Most organic photochemical reactions have excited-state lifetimes exceeding 1 picosecond, which places them outside possible computational studies. Westermeyr <i>et al.</i> demonstrated that a machine learning approach could significantly lengthen photodynamics simulation times for a model system, methylenimmonium cation (CH<sub>2</sub>NH<sub>2</sub><sup>+</sup>).</p><p>We have developed a Python-based code, Python Rapid Artificial Intelligence <i>Ab Initio</i> Molecular Dynamics (PyRAI<sup>2</sup>MD), to accomplish the unprecedented 10 ns <i>cis-trans</i> photodynamics of <i>trans</i>-hexafluoro-2-butene (CF<sub>3</sub>–CH=CH–CF<sub>3</sub>) in 3.5 days. The same simulation would take approximately 58 years with ground-truth multiconfigurational dynamics. We proposed an innovative scheme combining Wigner sampling, geometrical interpolations, and short-time quantum chemical trajectories to effectively sample the initial data, facilitating the adaptive sampling to generate an informative and data-efficient training set with 6,232 data points. Our neural networks achieved chemical accuracy (mean absolute error of 0.032 eV). Our 4,814 trajectories reproduced the S<sub>1</sub> half-life (60.5 fs), the photochemical product ratio (<i>trans</i>: <i>cis</i> = 2.3: 1), and autonomously discovered a pathway towards a carbene. The neural networks have also shown the capability of generalizing the full potential energy surface with chemically incomplete data (<i>trans</i> → <i>cis</i> but not <i>cis</i> → <i>trans</i> pathways) that may offer future automated photochemical reaction discoveries.</p>


2020 ◽  
Vol 10 (1) ◽  
pp. 194-219 ◽  
Author(s):  
Sanjoy Debnath ◽  
Wasim Arif ◽  
Srimanta Baishya

AbstractNature inspired swarm based meta-heuristic optimization technique is getting considerable attention and established to be very competitive with evolution based and physical based algorithms. This paper proposes a novel Buyer Inspired Meta-heuristic optimization Algorithm (BIMA) inspired form the social behaviour of human being in searching and bargaining for products. In BIMA, exploration and exploitation are achieved through shop to shop hoping and bargaining for products to be purchased based on cost, quality of the product, choice and distance to the shop. Comprehensive simulations are performed on 23 standard mathematical and CEC2017 benchmark functions and 3 engineering problems. An exhaustive comparative analysis with other algorithms is done by performing 30 independent runs and comparing the mean, standard deviation as well as by performing statistical test. The results showed significant improvement in terms of optimum value, convergence speed, and is also statistically more significant in comparison to most of the reported popular algorithms.


2014 ◽  
Vol 14 (1) ◽  
pp. 81-87
Author(s):  
Maciej Rachwał ◽  
Justyna Drzał-Grabiec ◽  
Katarzyna Walicka-Cupryś ◽  
Aleksandra Truszczyńska

Abstract Background: The post-mastectomy changes to the locomotor system are related to the scar and adhesion or to the lymphatic edema after amputation which, in turn, lead to local and global distraction of the work of the muscles. These changes lead to body statics disturbance that changes the projection of the center of gravity and worsens motor response due to changing of the muscle sensitivity. Objective: The aim of the study was to evaluate the static balance of women after undergoing mastectomy. Methods: The study included 150 women, including 75 who underwent mastectomy (mean age: 60±7.6) years, mean body mass index (BMI): 26 (±3.6) kg/m2) and 75 who were placed in the control group with matched age and BMI. The study was conducted using a tensometric platform. Results: Statistically significant differences were found for almost all parameters between the post-mastectomy group and group of healthy women, regarding center of foot pressure (COP) path length in the Y and X axes and the mean amplitude of COP. Conclusions: First, the findings revealed that balance in post-mastectomy women is significantly better than in the control group. Second, physiotherapeutic treatment of post-mastectomy women may have improved their posture stability compared with their peers.


2016 ◽  
Vol 8 (8) ◽  
pp. 182
Author(s):  
Kanwar Priyanaka ◽  
Y. C. Gupta ◽  
S. R. Dhiman ◽  
R. K. Dogra ◽  
Sharma Madhu ◽  
...  

<p>The studies on heterosis were carried with four male sterile lines namely; ms<sub>7</sub>, ms<sub>8</sub>, ms<sub>9,</sub> ms<sub>10</sub> and 18 diverse pollinators as tester by using line × tester crossing programme. The 72 F<sub>1</sub> hybrids were produced and evaluated along with 22 parental lines during summer 2009 and rainy season 2009 in Randomized Block Design. Observations were recorded on nine quantitative traits during both the seasons. Highly significant variances for all the traits indicated the sufficient variability in the parental material for all the characters under study. The performance of F<sub>1</sub> hybrids was much better than the mean performance of parents during both the crop seasons. Appreciable heterosis was observed in all the characters, except flower weight in summer and plant height in rainy season.</p>


Soil Research ◽  
1984 ◽  
Vol 22 (1) ◽  
pp. 81 ◽  
Author(s):  
DK Friesen ◽  
GJ Blair

Soil testing programs are often brought in disrepute by unexplained variability in the data. The deposition of dung and urine onto grazed pasture brings about marked variation in the chemical status of soils which contributes to this variability. A study was undertaken to compare a range of sampling procedures to estimate Colwell-P, Bray-1 P, bicarbonate K and pH levels in adjacent low and high P status paddocks. The sampling strategies used consisted of 75 by 50 m grids; whole and stratified paddock zig-zag and cluster (monitor plot) samplings. Soil test means for the various parameters did not vary among sampling methods. The number of grid samples required to estimate within 10% of the mean varied from 121 for Bray-1 P down to 1 for soil pH. Sampling efficiencies were higher for cluster sampling than for whole paddock zig-zag path sampling. Stratification generally did not improve sampling efficiency in these paddocks. Soil test means declined as sampling depth increased, but the coefficient of variation remained constant for Colwell-P and pH. The results indicate that cluster sampling (monitor plots) is the most appropriate procedure for estimating the nutrient status of grazed pastures. This sampling method enables a more accurate measure to be taken of the nutrient status of a paddock and should allow more reasonable estimates to be made of the temporal variations in soil test.


Geophysics ◽  
2014 ◽  
Vol 79 (1) ◽  
pp. IM1-IM9 ◽  
Author(s):  
Nathan Leon Foks ◽  
Richard Krahenbuhl ◽  
Yaoguo Li

Compressive inversion uses computational algorithms that decrease the time and storage needs of a traditional inverse problem. Most compression approaches focus on the model domain, and very few, other than traditional downsampling focus on the data domain for potential-field applications. To further the compression in the data domain, a direct and practical approach to the adaptive downsampling of potential-field data for large inversion problems has been developed. The approach is formulated to significantly reduce the quantity of data in relatively smooth or quiet regions of the data set, while preserving the signal anomalies that contain the relevant target information. Two major benefits arise from this form of compressive inversion. First, because the approach compresses the problem in the data domain, it can be applied immediately without the addition of, or modification to, existing inversion software. Second, as most industry software use some form of model or sensitivity compression, the addition of this adaptive data sampling creates a complete compressive inversion methodology whereby the reduction of computational cost is achieved simultaneously in the model and data domains. We applied the method to a synthetic magnetic data set and two large field magnetic data sets; however, the method is also applicable to other data types. Our results showed that the relevant model information is maintained after inversion despite using 1%–5% of the data.


2021 ◽  
Vol 50 (Supplement_1) ◽  
pp. i12-i42
Author(s):  
N Paul ◽  
A Xyrichis

Abstract   This study aimed to better understand appropriate interventions aimed at reducing hospital ward noise and the subsequent impact this would have on inpatient experience. Service users consistently reported that noise pollution was the most detrimental factor in their recovery in hospital, principally due to its effects on sleep. Methods To aid usability and data collection the Richards- Campbell Sleep Questionnaire (RCSQ) was adapted into an electronic format with a sliding Likert scale using QuestionPro Software3. Qualitative patient interviews, the RCSQ and ward decibel measurements were recorded on Henry and Anne wards at St. Thomas’ Hospital, London. 20 patients were interviewed (12F, 8 M), with 3 being ultimately discounted due to severe cognitive impairment. Results were collated and will be presented as part of a pre-feasibility evaluation of the tools to measure patient sleep and experience of ward noise. Results: The mean of the responses from the 17 patients interviewed were calculated and graphically displayed. Of interest, 87.5% found the questionnaire straightforward to understand, but only 18.75% found it easy to complete (due to technological unfamiliarity). Conclusion and discussion Patients reported a consistently reported a less than optimal night’s sleep on the ward, with light sleep and increased time to fall asleep being key factors. Although visits were restricted to the “quietest” times on the ward, noise measurements consistently exceeded WHO recommendations of 40 dB. Subsequently excessive night-time noise created by other patients as well as staff was cited as the principal causes of poor sleep, with ward lighting being another cause. Results from this study have provided the justification for sound-masking technology to be trialled on inpatient wards, with the view of decreasing unpleasant ward noise and improving patient rest and recovery.


Author(s):  
Mingwen Yang ◽  
Zhiqiang (Eric) Zheng ◽  
Vijay Mookerjee

Online reputation has become a key marketing-mix variable in the digital economy. Our study helps managers decide on the effort they should use to manage online reputation. We consider an online reputation race in which it is important not just to manage the absolute reputation, but also the relative rating. That is, to stay ahead, a firm should try to have ratings that are better than those of its competitors. Our findings are particularly significant for platform owners (such as Expedia or Yelp) to strategically grow their base of participating firms: growing the middle of the market (firms with average ratings) is the best option considering the goals of the platform and the other stakeholders, namely incumbents and consumers. For firms, we find that they should increase their effort when the mean market rating increases. Another key insight for firms is that, sometimes, adversity can come disguised as an opportunity. When an adverse event strikes the industry (such as a reduction in sales margin or an increase in the cost of effort), a firm’s profit can increase if it can manage this event better than its competitors.


Author(s):  
Timothy Marchok

AbstractMultiple configurations of the Geophysical Fluid Dynamics Laboratory vortex tracker are tested to determine a setup that produces the best representation of a model forecast tropical cyclone center fix for the purpose of providing track guidance with the highest degree of accuracy and availability. Details of the tracking algorithms are provided, including descriptions of both the Barnes analysis used for center-fixing most variables and a separate scheme used for center-fixing wind circulation. The tracker is tested by running multiple configurations on all storms from the 2015-2017 hurricane seasons in the Atlantic and eastern Pacific Basins using forecasts from two operational National Weather Service models, the Global Forecast System (GFS) and the Hurricane Weather Research and Forecast (HWRF) model. A configuration that tracks only 850 mb geopotential height has the smallest forecast track errors of any configuration based on an individual parameter. However, a configuration composed of the mean of eleven parameters outperforms any of the configurations that are based on individual parameters. Configurations composed of subsets of the eleven parameters and including both mass and momentum variables provide results comparable to or better than the full 11-parameter configuration. In particular, a subset configuration with thickness variables excluded generally outperforms the 11-parameter mean, while one composed of variables from only the 850 mb and near-surface layers performs nearly as well as the 11-parameter mean. Tracker configurations composed of multiple variables are more reliable in providing guidance through the end of a forecast period than are tracker configurations based on individual parameters.


Sign in / Sign up

Export Citation Format

Share Document