A New Formulation for Establishing the Lateral Interaction Between Buried Steel Pipeline and Sandy Soil Subjected to Strike-Slip Faulting

2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Mohammad Ashrafy ◽  
Mehrzad TahamouliRoudsari ◽  
Mahmood Hosseini

Abstract Buried pipelines are faced with and vulnerable to extreme hazards such as earthquakes, different types of faulting, and landslides. Generally, a buried pipeline is modeled as a beam on a series of springs, which represent the surrounding soil. To determine the specifications of these springs, the equations proposed by ASCE Guideline are usually used. Its accuracy was doubted by some recent studies. In this study, two full-scale tests simulating the effect of strike-slip faulting were initially carried out on 4 and 8-in. diameter steel pipes buried in compacted sandy soil. The displacement of the pipe was recorded directly at any moment, along its length. Then through optimization-based simulations, the specifications of the equivalent springs of the soil were calculated so that the deformation of the pipe along its length would be consistent with the experimental results. Then, based upon verified finite element models, a database of different parameters of buried pipes subjected to strike-slip faulting including the diameters and different burial depths was created. The results showed that the ASCE equations need modification at the condition of strike-slip faulting and so, based on the created database, a new form of the equations of lateral interaction between dense sandy soil and steel pipe in the presence of strike-slip fault was proposed.

2017 ◽  
Vol 50 (2) ◽  
pp. 97-113
Author(s):  
Zhongcheng Ma ◽  
Jarmo Havula ◽  
Markku Heinisuo

Two different types of finite element models to simulate the steel columns supported by sandwich panels are developed in this paper and validated by the full-scale tests by Hedman-Petursson (2001) at ambient temperature. The bracing forces in self-drilling screws, the effect of connections in horizontal joints, effects of the lateral stiffness of self-drilling screws are studied using the developed FE models. Effect of different configurations of loading eccentricity on the buckling resistances of steel columns supported by sandwich panels are further analyzed in this paper.


2020 ◽  
Vol 3 (2) ◽  
pp. 781-790
Author(s):  
M. Rizwan Akram ◽  
Ali Yesilyurt ◽  
A.Can. Zulfikar ◽  
F. Göktepe

Research on buried gas pipelines (BGPs) has taken an important consideration due to their failures in recent earthquakes. In permanent ground deformation (PGD) hazards, seismic faults are considered as one of the major causes of BGPs failure due to accumulation of impermissible tensile strains. In current research, four steel pipes such as X-42, X-52, X-60, and X-70 grades crossing through strike-slip, normal and reverse seismic faults have been investigated. Firstly, failure of BGPs due to change in soil-pipe parameters have been analyzed. Later, effects of seismic fault parameters such as change in dip angle and angle between pipe and fault plane are evaluated. Additionally, effects due to changing pipe class levels are also examined. The results of current study reveal that BGPs can resist until earthquake moment magnitude of 7.0 but fails above this limit under the assumed geotechnical properties of current study. In addition, strike-slip fault can trigger early damage in BGPs than normal and reverse faults. In the last stage, an early warning system is proposed based on the current procedure. 


2012 ◽  
Vol 41 ◽  
pp. 164-180 ◽  
Author(s):  
Polynikis Vazouras ◽  
Spyros A. Karamanos ◽  
Panos Dakoulas

2012 ◽  
Vol 204-208 ◽  
pp. 3476-3479 ◽  
Author(s):  
Xiu Xing Zhu ◽  
Shi Feng Xue ◽  
Xing Hua Tong ◽  
Chuan Qi Liu

Cases of pipeline damage caused by landslide are common in coastal or mountainous regions, where the design of buried pipelines should be improved in order to reduce the risk of damage or failure. Dynamic responses of large diameter thin wall steel pipes under impact loading were analyzed using a nonlinear contact model of pipe-soil coupling in this paper. Several influence factors were studied, such as the impact velocity of rockfall, buried depth of pipeline, ratio of diameter to thickness and style of soil. The results show that an ellipsoid induces much more impact force than a sphere which has the same volume, and the larger one in volume have greater impact force for two spheres. Dangerous compressive areas of pipeline occupy 1/6 of the whole area, so the pipelines subject to landslide occur local failure. Based on results, some useful suggestions for the design of pipelines in landslide region are given


2021 ◽  
Author(s):  
Ziheng Xin ◽  
Haiying Ma ◽  
Junjie Wang ◽  
Hao Gao ◽  
Yanchen Song

<p><br clear="none"/></p><p>Anti-collision devices can reduce the damage of bridge columns under ship collision, and a new device is proposed in the paper using a combination of titanium steel and recycle tires. The proposed device effectively improves the performance of buffering energy dissipation and durability under strong impact load. A 0.6 scale test specimen was designed and tested to investigate the behavior of the device under impact load; finite element models were conducted to analyze and compare with the experimental results. The performances of different types of the anti-collision device are compared, and the failure mechanism is studied.</p>


2016 ◽  
Vol 90 ◽  
pp. 395-410 ◽  
Author(s):  
Vasileios E. Melissianos ◽  
Georgios P. Korakitis ◽  
Charis J. Gantes ◽  
George D. Bouckovalas

2012 ◽  
Vol 166-169 ◽  
pp. 2209-2215
Author(s):  
Zhi Xin Wang ◽  
Hai Tao Fan ◽  
Huang Juan Zhao

Finite element models of frames with steel-bracings and with concrete filled steel tube struts are built in ETABS. Seismic performance of these models is analyzed with base-shear method, superposition of modal responses method and time history method respectively. The results show that the steel-bracings or concrete filled steel tube struts are efficient to increase the story-stiffness, and the top displacement of the frame structure decreases significantly.


2012 ◽  
Vol 58 (5) ◽  
pp. 562-567 ◽  
Author(s):  
Masaya Nishiyama ◽  
Ryohei Sugita ◽  
Shigeto Otsuka ◽  
Keishi Senoo

2000 ◽  
Vol 37 (2) ◽  
pp. 414-437 ◽  
Author(s):  
Asim Haldar ◽  
VSN Prasad Yenumula ◽  
T R Chari

The results of eight full-scale tests on directly embedded steel pole foundations are presented. Fully instrumented poles were tested to measure the various design parameters. Different types of backfills such as sand, in situ gravelly sand, crushed stone, and flowable material were used. Various parameters were measured, including applied moment, ground line deflection-rotation, rotation of the pole below the ground level, soil pressures, and bending moments in the poles. The behaviour of these foundations was explained through ultimate capacity and moment-rotation characteristics. Based on these test results, it was found that the capacity of the directly embedded pole foundation depends primarily on the compaction levels of backfill and the embedment length of the pole. Flowable backfill material, which does not require any compaction, was found to be most effective and promising. Even when the backfill was loose, the lateral capacity significantly increased by the addition of a baseplate or by installing the pole with an additional embedment depth. Various theories developed for laterally loaded rigid piles were used to predict the moment-rotation behaviour and the ultimate capacity of the directly embedded pole foundation with different types of backfill material. Results from the analytical investigations were compared with those obtained from the full-scale load tests. Comparisons show that the ultimate capacities predicted by the models ranged from 0.30 to 2.20 times the measured capacities.Key words: backfill, compaction, full-scale tests, laterally loaded rigid piles, transmission steel poles, ultimate moment.


Sign in / Sign up

Export Citation Format

Share Document