EWSE and Uncertainty and Disturbance Estimator Based Pitch Angle Control for Wind Turbine Systems Operating in Above-Rated Wind Speed Region

2019 ◽  
Vol 142 (3) ◽  
Author(s):  
Xuguo Jiao ◽  
Qinmin Yang ◽  
Bo Fan ◽  
Qi Chen ◽  
Yong Sun ◽  
...  

Abstract As wind energy becomes a larger part of the world's energy portfolio, the control of wind turbines is still confronted with challenges including wind speed randomness and high system uncertainties. In this study, a novel pitch angle controller based on effective wind speed estimation (EWSE) and uncertainty and disturbance estimator (UDE) is proposed for wind turbine systems (WTS) operating in above-rated wind speed region. The controller task is to maintain the WTS's generator power and rotor speed at their prescribed references, without measuring the wind speed information and accurate system model. This attempt also aims to bring a systematic solution to deal with different system characteristics over wide working range, including extreme and dynamic environmental conditions. First, support vector machine (SVR) based EWSE model is developed to estimate the effective wind speed in an online manner. Second, by integrating an UDE and EWSE model into the controller, highly turbulent and unpredictable dynamics introduced by wind speed and internal uncertainties is compensated. Rigid theoretical analysis guarantees the stability of the overall system. Finally, the performance of the novel pitch control scheme is testified via the professional Garrad Hassan (GH) bladed simulation platform with various working scenarios. The results reveal that the proposed approach achieves better performance in contrast to traditional L1 adaptive and proportional-integral (PI) pitch angle controllers.

Author(s):  
R. S. Amano ◽  
Ryan Malloy

The project has been completed, and all of the aforementioned objectives have been achieved. An anemometer has been constructed to measure wind speed, and a wind vane has been built to sense wind direction. An LCD module has been acquired and has been programmed to display the wind speed and its direction. An H-Bridge circuit was used to drive a gear motor that rotated the nacelle toward the windward direction. Finally, the blade pitch angle was controlled by a swash plate mechanism and servo motors installed on the generator itself. A microcontroller has been programmed to optimally control the servo motors and gear motor based on input from the wind vane and anemometer sensors.


2015 ◽  
Vol 64 (2) ◽  
pp. 291-314 ◽  
Author(s):  
Maziar Izadbakhsh ◽  
Alireza Rezvani ◽  
Majid Gandomkar

Abstract In this paper, dynamic response improvement of the grid connected hybrid system comprising of the wind power generation system (WPGS) and the photovoltaic (PV) are investigated under some critical circumstances. In order to maximize the output of solar arrays, a maximum power point tracking (MPPT) technique is presented. In this paper, an intelligent control technique using the artificial neural network (ANN) and the genetic algorithm (GA) are proposed to control the MPPT for a PV system under varying irradiation and temperature conditions. The ANN-GA control method is compared with the perturb and observe (P&O), the incremental conductance (IC) and the fuzzy logic methods. In other words, the data is optimized by GA and then, these optimum values are used in ANN. The results are indicated the ANN-GA is better and more reliable method in comparison with the conventional algorithms. The allocation of a pitch angle strategy based on the fuzzy logic controller (FLC) and comparison with conventional PI controller in high rated wind speed areas are carried out. Moreover, the pitch angle based on FLC with the wind speed and active power as the inputs can have faster response that lead to smoother power curves, improving the dynamic performance of the wind turbine and prevent the mechanical fatigues of the generator


1994 ◽  
Vol 116 (3) ◽  
pp. 153-157
Author(s):  
G. McNerney

The U.S. Windpower 56-100 is a three-bladed, free yaw wind turbine, using full span blade pitch control for power regulation. It is theoretically possible to increase the energy capture of the 56-100 by adjusting the blade angle to the optimum pitch angle on a continuing basis at below rated speeds. This concept was field tested on the 56-100, but it was found that the optimum pitch control logic opens a pathway for the 56-100 to fall into stall operation when the winds are above the rated wind speed. The 56-100 then operates as a stall-regulated wind turbine with an overall reduction of energy capture and an increase in system loads.


2014 ◽  
Vol 698 ◽  
pp. 168-172 ◽  
Author(s):  
Vadim Z. Manusov ◽  
Sherzod K. Khaldarov

In this paper, an adapted control scheme based on fuzzy logic approach to adjusting turbine speed so as to track the maximum power points is proposed. This scheme facilitates continuous control of wind turbine speed, adapting to the changing wind speed.


2021 ◽  
Vol 19 ◽  
pp. 505-510
Author(s):  
Cristhian Leonardo Pabón Rojas ◽  
◽  
Carlos Andrés Trujillo Suarez ◽  
Juan Carlos Serrano Rico ◽  
Elkin Gregorio Flórez Serrano ◽  
...  

In order to take advantage of the low wind speed found in the Colombian territory, a gradient-based optimization process (GBA) of 2 airfoils is carried out, using the Xfoil software to evaluate the interactions. The shapes chosen will be destined for the root and for the middle zone of a blade for a small horizontal axis wind turbine (sHAWT). The blade will be created from the calculation of the chord and pitch angle with the blade element momentum methodology (BEM) and the SHAWT will be tested by CFD software to check its performance. As a preliminary result, a root-bound airfoil has been obtained with a higher performance than the airfoil used as a bases.


Author(s):  
Jared B. Garrison ◽  
Michael E. Webber

Currently, wind and solar technologies only generate 0.77% and 0.014% of the U.S. electricity consumption, respectively [1]. Though only a small portion of total U.S. electricity production, both sources have seen significant growth recently. For instance, Texas has more than quadrupled its installed wind capacity over the period from 2005–2009 with new installations totaling over 9400 MW [2, 3]. These two resources are globally available and have the potential to generate massive amounts of electricity. As the amount of installed wind turbines continues to grow, gaining better knowledge of their operation and their dynamic response to changing wind conditions is important to ensure their smooth integration and safe operation. The goal of this research is to analyze the dynamic and steady state operations of a 1.5 MW variable speed wind turbine that uses an external rotor resistive control mechanism. The addition of the external generator rotor resistance allows for adjustment of the generator slip and employs a feedback controller that maintains constant power output at all air velocities between the rated wind speed and cut-out wind speed. Using the electronic programming language PSCAD/EMTDC the model simulates the dynamic response to changing wind conditions, as well as the performance under all wind conditions. The first task of the model was to determine which blade pitch angle produces a maximum power output of 1.5 MW. A sweep was used where the simulation runs over the entire range of wind speeds for a selected pitch angle to find which speed resulted in maximum power output. This sweep was used for numerous blade pitch angles until the combination of wind speed and pitch angle at 14.4 m/s and −0.663°, respectively, resulted in a maximum power of 1.5 MW. The second task was to evaluate the model’s dynamic response to changes in wind conditions as well as steady state operation over all wind speeds. The dynamic response to an increase or decrease in wind speed is important to the safety and life expectancy of a wind turbine because unwanted spikes and dips can occur that increase stresses in the wind turbine and possibly lead to failure. In order to minimize these transient effects, multiple controllers were implemented in order to test each ones’ dynamic response to increasing and decreasing changes in wind velocity. These simulations modeled the characteristics of a variable-speed wind turbine with constant power rotor resistive control. First, through calibrating the model the design specifications of blade pitch and wind speed which yield the peak desired output of 1.5 MW were determined. Then, using the method of controlling the external rotor resistance, the simulation was able to maintain the 1.5 MW power output for all wind speeds between the rated and cutout speeds. Also, by using multiple controllers, the dynamic response of the control scheme was improved by reducing the magnitude of the initial response and convergence time that results from changes in wind speed. Finally, by allowing the simulation to converge at each wind speed, the steady state operation, including generator power output and resistive thermal losses, was characterized for all wind speeds.


2019 ◽  
Vol 44 (2) ◽  
pp. 125-141
Author(s):  
Satyabrata Sahoo ◽  
Bidyadhar Subudhi ◽  
Gayadhar Panda

This article presents a multiple adaptive neuro-fuzzy inference system-based control scheme for operation of the wind energy conversion system above the rated wind speed. By controlling the pitch angle and generator torque concurrently, the generator power and speed fluctuation can be reduced and also turbine blade stress can be minimized. The proposed neuro-fuzzy-based adaptive controller is composed of both the Takagi–Sugeno fuzzy inference system and neural network. First, a step change in wind speed and then a simulated wind speed are considered in the proposed adaptive control design. A MATLAB/Simulink model of the wind turbine system is prepared, and simulations are carried out by applying the proportional integral, fuzzy-proportional integral and the proposed adaptive controller. From the obtained results, the effectiveness of the proposed adaptive controller approach is confirmed.


Author(s):  
Fateh Ferroudji ◽  
Cherif Khelifi ◽  
Farouk Meguellati ◽  
Khaled Koussa

Modeling and simulation of mechanical structures in development phase are fundamental to optimize and improve the stability and reliability of the final product as well as to reduce the cost of prototyping and testing. Wind turbines are subject to critical loading to the centrifugal force due to wind speed and gravitational force. The present study discusses three-dimensional numerical simulations of combined Darrieus-Savonius wind turbine D-SWT for applications in urban and isolated areas for lighting, pumping water, etc. The Darrieus turbine is used to produce wind power and the Savonius rotor to start the system. Finite Element Analysis (FEA) using SolidWorks 2015 is employed to generate the geometry of the structure and SolidWorks Simulation to investigate the stability and reliability static on the structure of the D-WST built by two types of material of the blade Galvanized Steel (GS) and Aluminum alloys 1060-H18 (ALU). Mechanical parameter of the structure are calculated for critical loading conditions, including the gravity and wind pressure loading due to the wind speed of 23m/s. Simulations results indicate no structural failure is predicted for all components of the D-SWT for both materials used according to Von Mises criterion stresses and the factors of safety of the most fragile material are greater than (the unity) 1. The maximum displacements found (3.84 & 6.81mm), occurred at the tip blades (free ends levels). These displacements are accepted relatively to the structure size.


Sign in / Sign up

Export Citation Format

Share Document