Scanning Micro-Electrochemical Machining Process for V-Shaped Grooves

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Hao Zhong ◽  
Hao Tong ◽  
Zhiqiang Wang ◽  
Yong Li ◽  
Yubin Pu

Abstract Microstructures determine flow properties of microfluidic chip. Micromold forming is an effective method to realize mass manufacturing of microfluidic chips. This requires to machine some kind of special microstructure of high surface quality on a metal/alloy workpiece. Micro V-shaped grooves are the typical microstructures of the chip micromolds used for controlling microfluid or weld packaging. In this research, a scanning micro-electrochemical machining (ECM) process of V-shaped grooves is proposed using a tool electrode fabricated by micro–electrical discharge machining (EDM) on-machine. Theoretical and experimental research was conducted for achieving the V-shaped grooves with a given angle on die steel. A long-distance V-shaped groove with the given angle of 67 deg and the depth of 125 μm was successfully machined.

Author(s):  
Zhang Yaou ◽  
Han Ning ◽  
Kang Xiaoming ◽  
Zhao Wansheng ◽  
Xu Kaixian

In this study, a new electrostatic field–induced electrolyte jet electrical discharge machining method has been proposed, which can automatically generate the tool electrode. Then, a series of experiments have been carried out to reveal the machining mechanism and test the machining ability of this method. The continuous observation experiments and the online current detection experiments have demonstrated that the electrolyte jet discharge machining is a pulsing, dynamic and cyclic process. Moreover, the 20-min time long reverse polarity experiments on the silicon surface have revealed that the machining is an electrical discharge machining process during the negative polarity machining; however, in the positive polarity machining, it is a hybrid electrical discharge machining and electrochemical machining process. Furthermore, the craters as small as 2 µm in diameter on stainless steel and silicon are produced by this electrolyte jet electrical discharge machining, which has proved the micro-machining ability of this method.


2015 ◽  
Vol 651-653 ◽  
pp. 759-764
Author(s):  
Oliver Kröning ◽  
Mathias Herzig ◽  
Matthias Hackert-Oschätzchen ◽  
Ralf Kühn ◽  
Henning Zeidler ◽  
...  

Micro EDM (Electrical Discharge Machining) is a known nonconventional process for the machining of hard to cut materials. Due to its ablating nature based on melting and evaporation through heat induced by electrical discharges, it can function independently of the hardness, toughness or brittleness of the workpiece. Thus micro EDM is a possible process to fulfill the requirements of higher precision and high quality in carbide metal machining. Thereby the surface and the roughness of machined carbide metals depend on the discharge energy used. For machining carbide metals with high surface quality pulse generators with ultra-short discharges are required. This paper presents the development of a two-staged pulse generator with the ability to provide ultra-short pulses by using a two-staged pulse. The current and voltage signals of the discharges were recorded and their characteristics were analyzed.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Ryoichiro Kishi ◽  
Jiwang Yan

Abstract Electrical discharge machining (EDM) causes surface defects such as resolidified layer and microcracks, and a finishing process is usually needed to remove these defects. In this paper, a hybrid process was proposed where electrochemical machining (ECM) was performed as a finishing process after EDM using the same tool electrode on the same machine. By using two kinds of disk-type rotary electrodes, rectangular grooves and grooves with convex inner structures were fabricated. Surface topography were investigated by using scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDX), and laser-probe surface profilometer. The material removal mechanism of resolidified layers was clarified. The surface roughness of the rectangular groove was improved from 3.82 μm Ra to 0.86 μm Ra after ECM. Electrode rotation was effective for flushing electrolytic products when fabricating inner structures. As there is no need for exchanging tools and machines, tool alignment error can be prevented and productivity can be improved. Therefore, the proposed EDM/ECM hybrid process contributes to rapid fabrication of microscale products with high surface integrity.


2009 ◽  
Vol 69-70 ◽  
pp. 177-181
Author(s):  
Zi Long Peng ◽  
Zhen Long Wang ◽  
Ying Huai Dong ◽  
Hui Chen

Based on the principle of micro electrical discharge machining (EDM), a reversible machining method is proposed, which can achieve depositing or removing selectively metal material for the fabrication of micro structures. It is easy to transform the machining process from deposition to removal in one machining system. The characteristics of the deposited material show that the components of deposited material are almost the same as those of the tool electrode, and the metallurgical bonding has formed on the interface between the deposited material and the base. Moreover, the deposited material has well machinability in different micro EDM selective removal process, including micro EDM die-sinking and micro EDM milling. As a result, a micro square column with 0.1mm in side length, 0.88mm in height and a micro cylinder with 0.14mm in diameter, 1.18mm in height were fabricated by using the micro reversible EDM process.


2006 ◽  
Vol 315-316 ◽  
pp. 731-735
Author(s):  
Xiao Hai Li ◽  
Zhen Long Wang ◽  
Wan Sheng Zhao

Electrochemical machining (ECM) has been rarely applied in micromachining because the electric field is not localized. In order to explore the feasibility of applying ECM to micromachining at micro to meso-scale, an experimental setup with precision control over electrochemical micromachining (EMM) was developed, which is in fact a multifunctional machine tool. The micro tool electrodes for EMM can also be fabricated by micro electrical discharge machining (EDM) on the same machine tool. A high-frequency short-pulse micro-energy MOSFET power supply was designed. Lower machining voltage and lower concentration of passivity electrolyte are utilized together to localize dissolution area in EMM. A micro hole 45 ,m in diameter was drilled by EMM on stainless steel foil with 100 μm thickness. A new approach of fabricating microstructures by means of EMM milling using a simple micro tool electrode is proposed, and a shaped hole and a micro cantilever beam with high precision were acquired by EMM milling. The satisfactory process results indicate the potential capability of EMM for higher machining accuracy and smaller machining size.


Author(s):  
Gurpreet Singh ◽  
DR Prajapati ◽  
PS Satsangi

The micro-electrical discharge machining process is hindered by low material removal rate and low surface quality, which bound its capability. The assistance of ultrasonic vibration and magnetic pulling force in micro-electrical discharge machining helps to overcome this limitation and increase the stability of the machining process. In the present research, an attempt has been made on Taguchi based GRA optimization for µEDM assisted with ultrasonic vibration and magnetic pulling force while µEDM of SKD-5 die steel with the tubular copper electrode. The process parameters such as ultrasonic vibration, magnetic pulling force, tool rotation, energy and feed rate have been chosen as process variables. Material removal rate and taper of the feature have been selected as response measures. From the experimental study, it has been found that response output measures have been significantly improved by 18% as compared to non assisted µEDM. The best optimal combination of input parameters for improved performance measures were recorded as machining with ultrasonic vibration (U1), 0.25 kgf of magnetic pulling force (M1), 600 rpm of tool rotation (R2), 3.38 mJ of energy (E3) and 1.5 mm/min of Tool feed rate (F3). The confirmation trail was also carried out for the validation of the results attained by Grey Relational Analysis and confirmed that there is a substantial improvement with both assistance applied simultaneously.


Author(s):  
Sagil James ◽  
Sharadkumar Kakadiya

Shape Memory Alloys are smart materials that tend to remember and return to its original shape when subjected to deformation. These materials find numerous applications in robotics, automotive and biomedical industries. Micromachining of SMAs is often a considerable challenge using conventional machining processes. Micro-Electrical Discharge Machining is a combination of thermal and electrical processes, which can machine any electrically conductive material at micron scale independent of its hardness. It employs dielectric medium such as hydrocarbon oils, deionized water, and kerosene. Using liquid dielectrics has adverse effects on the machined surface causing cracking, white layer deposition, and irregular surface finish. These limitations can be minimized by using a dry dielectric medium such as air or nitrogen gas. This research involves the experimental study of micromachining of Shape Memory Alloys using dry Micro-Electrical Discharge Machining process. The study considers the effect of critical process parameters including discharge voltage and discharge current on the material removal rate and the tool wear rate. A comparison study is performed between the Micro-Electrical Discharge Machining process with using the liquid as well as air as the dielectric medium. In this study, microcavities are successfully machined on shape memory alloys using dry Micro-Electrical Discharge Machining process. The study found that the dry Micro-Electrical Discharge Machining produces a comparatively better surface finish, has lower tool wear and lesser material removal rate compared to the process using the liquid as the dielectric medium. The results of this research could extend the industrial applications of Micro Electrical Discharge Machining processes.


Volume 1 ◽  
2004 ◽  
Author(s):  
Ricardo Itiro Ori ◽  
Fumihiro Itoigawa ◽  
Shinya Hayakawa ◽  
Takashi Nakamura ◽  
Shun-Ichiro Tanaka

The development of an advanced alloying process using Micro-Electrical Discharge Machining Deposition is described in the present paper. The new process uses a micro-sized bimetal tool electrode, which is composed of two halves; each part made of a different metal. The alloying process of the two metals occurs during the deposition process previously proposed by the authors, which can create 3-dimensional micro-sized objects. The quality of alloyed metal was verified using X-ray analysis. In the present experiment the two metals used are YNi-1 (nickel alloy used in TIG welding) and S45C (medium carbon steel). EPMA results of the obtained deposit show that the nickel and iron distribution in the deposit is uniform when the tool electrode spins during the deposition process. Also, it was found that the chemical composition of the main metal in the deposited object is proportional to the cross sectional area in the bi-metal electrode section. Therefore, not only the deposition process takes place but also the chemical composition of the deposit can be simultaneously controlled using this process.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 325
Author(s):  
Muslim Mahardika ◽  
Martin Andre Setyawan ◽  
Tutik Sriani ◽  
Norihisa Miki ◽  
Gunawan Setia Prihandana

Titanium is widely used in biomedical components. As a promising advanced manufacturing process, electropolishing (EP) has advantages in polishing the machined surfaces of material that is hard and difficult to cut. This paper presents the fabrication of a titanium microchannel using the EP process. The Taguchi method was adopted to determine the optimal process parameters by which to obtain high surface quality using an L9 orthogonal array. The Pareto analysis of variance was utilized to analyze the three machining process parameters: applied voltage, concentration of ethanol in an electrolyte solution, and machining gap. In vitro experiments were conducted to investigate the fouling effect of blood on the microchannel. The result shows that an applied voltage of 20 V, an ethanol concentration of 20 vol.%, and a machining gap of 10 mm are the optimum machining parameters by which to enhance the surface quality of a titanium microchannel. Under the optimized machining parameters, the surface quality improved from 1.46 to 0.22 μm. Moreover, the adhesion of blood on the surface during the fouling experiment was significantly decreased, thus confirming the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document