Multifunctional Fused Deposition Modeled Acrylonitrile Butadiene Styrene-Based Structures With Embedded Conductive Channels

Author(s):  
George Youssef ◽  
Jordan Smilo ◽  
Aryan Blourchian ◽  
Nha Uyen Huynh ◽  
Arbi V. Karapetian

Abstract The applicability of additive manufacturing (AM) continues to expand because of research and development efforts in industrial, academic, and governmental institutions. The lure of additive manufacturing lies in the quick time-to-market and ability to produce parts and components with high degrees of topographical complexity empowered by the layer-by-layer production approach. One challenge that is attracting a significant amount of attention is improving the multi-functionality of additively manufactured parts, as enabling multi-functionality will result in transitioning AM to a broader application domain. The objective of this paper is to report novel developments that improve the functionality of polymer-based parts by adding electrical conductivity and fluid management to the existing load-bearing capabilities. A space structure was 3D-printed using acrylonitrile butadiene styrene (ABS) with embedded internal channels throughout the entire structure and then sealed using an acetone-diluted epoxy. The inner surfaces of the embedded channels of the sealed structure were then metallized using an electroless silver-coating process; these processes were found to be robust and independent of the inner diameter and length of the structure. The electromechanical performance of the structure was verified by applying mechanical loading while monitoring the change in electrical resistivity. The latter was found to remain nearly constant up to the point of ultimate mechanical failure. Finite element modeling was used to identify the areas of structural weaknesses and assist in elucidating the failure modes. The results were found to be in good agreement with the experimental data.

Author(s):  
Dominic Thaler ◽  
Nahal Aliheidari ◽  
Amir Ameli

Additive manufacturing is an emerging method to produce customized parts with functional materials without big investments. As one of the common additive manufacturing methods, fused deposition modeling (FDM) uses thermoplastic-based feedstock. It has been recently adapted to fabricate composite materials too. Acrylonitrile butadiene styrene (ABS) is the most widely used material as FDM feedstock. However, it is an electrically insulating polymer. Carbon Nanotubes (CNTs) on the other hand are highly conductive. They are attractive fillers because of their high aspect ratio, and excellent mechanical and physical properties. Therefore, a nanocomposite of these two materials can give an electrically conductive material that is potentially compatible with FDM printing. This work focuses on the investigation of the relationships between the FDM process parameters and the electrical conductivity of the printed ABS/CNT nanocomposites. Nanocomposite filaments with CNT contents up to 10wt% were produced using a twin-screw extruder followed by 3D printing using FDM method. The starting material was pellets from a masterbatch containing 15 wt% CNT. Compression-molded samples of ABS/CNT were also prepared as the bulk baselines. The effects of CNT content and nozzle size on the through-layer and in-layer electrical conductivity of the printed nanocomposites were analyzed. Overall, a higher percolation threshold was observed in the printed samples, compared to that of the compression-molded counterparts. This resulted in the conductivity of the printed samples that is at least one order of magnitude lower. Moreover, at CNT contents up to 5 wt%, the in-layer conductivity of the printed samples was almost two orders of magnitudes higher than that in the through-layer direction. In ABS/3 wt% CNT samples, the through-layer conductivity continuously decreased as the nozzle diameter was decreased from 0.8 mm to 0.35 mm. These variations in the electrical conductivity were explained in terms of the CNT alignment, caused by the extrusion process during the print, quality of interlayer bonding during deposition, and the voids created due to the discrete nature of the printing process.


2019 ◽  
Vol 821 ◽  
pp. 137-143 ◽  
Author(s):  
Pavan Kumar Gurrala ◽  
Brijesh Tripathi

In the current technological evolution, additive manufacturing is taking a lead role in manufacturing of components for both prototyping as well as finished products. Metallization of the polymer parts has high potential to add value in-terms of metallic luster, improved strength, long shelf-life and better radiation resistance. Standard acid copper plating process has been adopted for deposition of copper on polymer parts manufactured by fused deposition modelling (FDM) technique. The parameters namely the etching time, voltage and the surface finish of the manufactured FDM parts are studied for their influence on the surface quality. Experiments have been designed using design of experiments strategy. Experiments have been conducted and surface roughness has been measured. Influence of each of the three parameters has been discussed in detail. For the reported process the optimal value of etching time of Acrylonitrile Butadiene Styrene (ABS) has been found in the range of 30 to 60 minutes along with applied voltage in the range of 1.5 to 2.5 Volts for copper electroplating.


2018 ◽  
Vol 24 (6) ◽  
pp. 921-934 ◽  
Author(s):  
Mohammad Abu Hasan Khondoker ◽  
Asad Asad ◽  
Dan Sameoto

Purpose This paper aims to target to print functionally gradient materials (FGM) devices made of immiscible polymers in multi-material fused deposition modelling (FDM) systems. The design is intended to improve adhesion of dissimilar thermoplastics without the need for chemical compatibilization so that filaments from many different sources can be used effectively. Therefore, there is a need to invent an alternative solution for printing multiple immiscible polymers in an FDM system with the desired adhesion. Design/methodology/approach In this study, the authors have developed a bi-extruder for FDM systems which can print two thermoplastics through a single nozzle with a static intermixer to enhance bonding between input materials. The system can also change the composition of extrudates continuously. Findings The uniqueness of this extruder is in its easy access to the internal channel so that a static intermixer can be inserted, enabling deposition of mechanically interlocked extrudates composed of two immiscible polymers. Without this intermixer, the bi-extruder extrudes with simple side-by-side co-extrusion having no mechanical interlocking. The bi-extruder was characterized by printing objects using pairs of materials including polylactic acid, acrylonitrile butadiene styrene and high impact polystyrene. Microscope images of the cross-sections of the extrudates confirm the ability of this bi-extruder to control the composition as desired. It was also found that the mechanically interlocked extrudates composed of two immiscible polymers substantially reduces adhesion failures within and between filaments. Originality/value In this study, the first-ever FDM extruder with a mechanical blending feature next to the nozzle has been designed and used to successfully print FGM objects with improved mechanical properties.


Author(s):  
Meng Zhang ◽  
Xiaoxu Song ◽  
Weston Grove ◽  
Emmett Hull ◽  
Z. J. Pei ◽  
...  

Additive manufacturing (AM) is a class of manufacturing processes where material is deposited in a layer-by-layer fashion to fabricate a three-dimensional part directly from a computer-aided design model. With a current market share of 44%, thermoplastic-based additive manufacturing such as fused deposition modeling (FDM) is a prevailing technology. A key challenge for AM parts (especially for parts made by FDM) in engineering applications is the weak inter-layer adhesion. The lack of bonding between filaments usually results in delamination and mechanical failure. To address this challenge, this study embedded carbon nanotubes into acrylonitrile butadiene styrene (ABS) thermoplastics via a filament extrusion process. The vigorous response of carbon nanotubes to microwave irradiation, leading to the release of a large amount of heat, is used to melt the ABS thermoplastic matrix adjacent to carbon nanotubes within a very short time period. This treatment is found to enhance the inter-layer adhesion without bulk heating to deform the 3D printed parts. Tensile and flexural tests were performed to evaluation the effects of microwave irradiation on mechanical properties of the specimens made by FDM. Scanning electron microscopic (SEM) images were taken to characterize the fracture surfaces of tensile test specimens. The actual carbon nanotube contents in the filaments were measured by conducting thermogravimetric analysis (TGA). The effects of microwave irradiation on the electrical resistivity of the filament were also reported.


2011 ◽  
Vol 2011 (1) ◽  
pp. 001021-001027 ◽  
Author(s):  
Cassie Gutierrez ◽  
Rudy Salas ◽  
Gustavo Hernandez ◽  
Dan Muse ◽  
Richard Olivas ◽  
...  

Fabricating entire systems with both electrical and mechanical content through on-demand 3D printing is the future for high value manufacturing. In this new paradigm, conformal and complex shapes with a diversity of materials in spatial gradients can be built layer-by-layer using hybrid Additive Manufacturing (AM). A design can be conceived in Computer Aided Design (CAD) and printed on-demand. This new integrated approach enables the fabrication of sophisticated electronics in mechanical structures by avoiding the restrictions of traditional fabrication techniques, which result in stiff, two dimensional printed circuit boards (PCB) fabricated using many disparate and wasteful processes. The integration of Additive Manufacturing (AM) combined with Direct Print (DP) micro-dispensing and robotic pick-and-place for component placement can 1) provide the capability to print-on-demand fabrication, 2) enable the use of micron-resolution cavities for press fitting electronic components and 3) integrate conductive traces for electrical interconnect between components. The fabrication freedom introduced by AM techniques such as stereolithography (SL), ultrasonic consolidation (UC), and fused deposition modeling (FDM) have only recently been explored in the context of electronics integration and 3D packaging. This paper describes a process that provides a novel approach for the fabrication of stiff conformal structures with integrated electronics and describes a prototype demonstration: a volumetrically-efficient sensor and microcontroller subsystem scheduled to launch in a CubeSat designed with the CubeFlow methodology.


2020 ◽  
Vol 12 (9) ◽  
pp. 3568 ◽  
Author(s):  
Nectarios Vidakis ◽  
Markos Petousis ◽  
Athena Maniadi ◽  
Emmanuel Koudoumas ◽  
Achilles Vairis ◽  
...  

Sustainability in additive manufacturing refers mainly to the recycling rate of polymers and composites used in fused filament fabrication (FFF), which nowadays are rapidly increasing in volume and value. Recycling of such materials is mostly a thermomechanical process that modifies their overall mechanical behavior. The present research work focuses on the acrylonitrile-butadiene-styrene (ABS) polymer, which is the second most popular material used in FFF-3D printing. In order to investigate the effect of the recycling courses on the mechanical response of the ABS polymer, an experimental simulation of the recycling process that isolates the thermomechanical treatment from other parameters (i.e., contamination, ageing, etc.) has been performed. To quantify the effect of repeated recycling processes on the mechanic response of the ABS polymer, a wide variety of mechanical tests were conducted on FFF-printed specimens. Regarding this, standard tensile, compression, flexion, impact and micro-hardness tests were performed per recycle repetition. The findings prove that the mechanical response of the recycled ABS polymer is generally improved over the recycling repetitions for a certain number of repetitions. An optimum overall mechanical behavior is found between the third and the fifth repetition, indicating a significant positive impact of the ABS polymer recycling, besides the environmental one.


Author(s):  
Michal Jilich ◽  
Mattia Frascio ◽  
Massimiliano Avalle ◽  
Matteo Zoppi

The paper presents how a robotic gripper specific for grasping and handling of textiles and soft flexible layers can be miniaturized and improved by polymeric additive manufacturing-oriented re-design. Advantages of polymeric additive manufacturing are to allow a re-design of components with integrated functions, to be cost-effective equipment for small batches production and the availability of suitable materials for many applications. The drawback is that for design validation extended testing is still necessary because of lacks in standardization and that the mechanical properties are building parameters dependent. The outcomes are a lower complexity of the design overall and lower number of components. These are pursued taking advantage of the anisotropy of the additive manufacturing processed polymer and assigning appropriate shapes and linkages in the mechanisms. Set of common materials (polylactide, polyethylene terephthalate, acrylonitrile butadiene styrene) and technical (acrylonitrile styrene acrylate, polycarbonate/polybutylene terephthalate blend) are tested to obtain data for the modelling.


Author(s):  
Shajahan Bin Maidin ◽  
Zulkeflee Abdullah ◽  
Ting Kung Hieng

One of the disadvantages of fused deposition modeling (FDM) is waste produced during the printing processes. This investigation focuses on using 100% recycled Acrylonitrile Butadiene Styrene (ABS) for the FDM process. The recycling begins with re-granule the waste ABS material and produces it into a new filament. The new recycled filament was used to print the test specimen. Investigation on the mechanical properties and the surface quality of the test specimen and comparison with standard ABS specimen was done. The result shows that the recycled ABS can be produced into filament with 335°C of extrusion temperature and 1.5 mm/s travel speed of the extruder conveyor. The surface roughness of recycled specimen is 6.94% higher than the standard ABS specimen. For ultimate tensile strength, there is a small difference in X and Y orientation between the standard and the recycled ABS specimen which are 22.93% and 19.98%, respectively. However, in Z orientation, it is 52.33% lower. This investigation proves that ABS can be recycled without significantly affecting its mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document